Определение. Сумма целых неотрицательных степеней неизвестного Х, взятых с некоторыми числовыми коэфйфициентами, называется многочленом.

Здесь: - действительные числа.

n - cтепень многочлена.

Операции над многочленами.

1). При сложении (вычитании) двух многочленов складываются (вычитаются) коэффициенты при одинаковых степенях неизвестнолго х.

2). Два многочлена равны, если они имеют одинаковую степень и равные коэффициенты при одинаковых степенях Х.

3). Степень многочлена, получаемого при перемножении двух многочленов, равна сумме степеней перемножаемых многочленов.

4). Линейные операции над многочленами обладают свойствами ассоциативности, коммутативности и дистрибутивности.

5) Деление многочлена на многочлен можно осуществить по правилу «деление уголком».

Определение. Число х=а называется корнем многочлена, если подстановка его в многочлен обращает его в нуль, т. е.

Теорема Безу. Остаток от деления многочлена
на двучлен (х-а) равен значению многочлена при х=а, т. е.

Доказательство.

Пусть , где

Полагая в равенстве х=а, получим

1). При делении многочлена на двучлен (х-а) остатком всегда будет число.

2). Если а – корень многочлена, то многочлен делится на двучлен (х-а) без остатка.

3) При делении многочлена степени n на двучлен (х-а) в частном получаем многочлен степени (n-1).

Основная теорема алгебры. Любой многочлен смтепени n (n >1) имеет хотябы один корень (приводим без доказательства).

Следствие. Всякий многочлен степени n имеет ровно n корней и над полем комплексных чисел разлагается в произведение n линейных множителей, т. е. Среди корней многочлена могут быть повторяющиеся числа (кратные корни). У многочленов с действительными коэффициентами комплексные корни могут появляться только сопряжёнными парами. Докажем последнее утверждение.

Пусть
- комплексный корень многочлена, тогда На основании общего свойства комплексных чисел можно утверждать следовательно
- тоже корень.

Каждой паре комплексных сопряжённых корней многочлена соответствует квадратный трёхчлен с действительными коэфйфициентами.

здесь p , q - действительные числа (показать на примере).

Вывод. Всякий многочлен представим в виде произведения линейных множителей и квадратных трёхчленов с действительными коэффициентами.

Рациональные дроби.

Рациональной дробью называется отношение двух многочленов.

Если
, то рациональная дробь называается правильной. В противном случае дробь – неправильная. Всякую неправильную дробь можно представить в виде суммы многочлена (частного) и правильной рациональной дроби путём деления многочлена, стоящего в числителе, на многочлен, стоящий в знаменателе.

- неправильная рациональная дробь.

Данную неправильную рациональную дробь теперь можно представить в следующем виде.

С учётом показанного, в дальнейшем будем рассматривать только правильные рациональные дроби.

Существуют так называемые простейшие рациональные дроби – это дроби, не поддающиеся никакому упрощению. Эти простейшие дроби имеют вид:

Правильную рациональную дробь более сложного вида всегда можно представить в виде суммы простейших рациональных дробей. Набор дробей определяется набором корней многочлена, стоящего в знаменателе правильной несократимой рациональной дроби. Правило разложения дроби на простейшие следующее.

Пусть рациональная дробь представлена в следующем виде.

Здесь в числителе простейших дробей стоят неизвестные коэффициенты, которые всегда могут быть определены методом неопределённых коэффициентов. Суть метода состоит в приравнивании коэффициентов при одинаковых степенях Х у многочлена, стоящего в числителе исходной дроби и многочлена, стоящего в числителе дроби, полученной после приведения простейших дробей к общему знаменателю.

Приравняем коэффициенты при одинаковых степенях Х.

Решая систему уравнений относительно неизвестных коэффициентов, получим.

Итак, данная дробь представима набором следующих простейших дробей.

Приведением к общему знаменателю убеждаемся в правильности решения задачи.

Запиши в тетрадь тему урока

"Рациональные дроби".

Что это такое?
Это алгебраические выражения, которые содержат деление на выражение с переменными.

Например:
- дробное выражение.

Целое, потому, что оно равно , т. е. целому выражению с рациональными коэффициентами.

Целые и дробные выражения называются рациональными выражениями.

Вот с ними нам и предстоит работать в дальнейшем!

Целое выражение имеет смысл при любых значениях переменных, а вот дробное... делить-то на 0 нельзя!

Например:
определено при всех значениях переменной а и при всех значениях b, кроме b=3.

При каких значениях переменной выражение
?

Запомни:
Для любых значений а, b и с, где и , верно равенство

Если мы домножим дробь на число (т. е. умножим числитель и знаменатель дроби на одно и тоже число), то получаем равную дробь, но уже с другим знаменателем.

Если делим числитель и знаменатель на одно и тоже число, то сокращаем дробь.
Например:
1) Приведем дробь к дроби со знаменателем 35у3 .
Сначала поделим новый знаменатель 35у3 на старый 7у и получим дополнительный множитель 5у2 .
А потом умножим числитель и знаменатель на этот дополнительный множитель:
.

2) Cократим дробь .
Решение:

Запомни:
Чтобы сократить дробь надо числитель и знаменатель разложить на множители и затем поделить их на равный множитель, т.е. сократить.

Для разложения выражения на множители существует несколько методов.
Нам с тобой пока знакомы два из них:
1 метод
Вынесение за скобку общего множителя.
2 метод
Применение формул сокращенного умножения.

Первый и самый простой способ разложения на множители -
вынесение общего множителя за скобку.

Ac + bc = (a + b)c

Пример 1: 5ab2c3 - 10a2b3c + 15a3bc2 = 5abc(bc2 - 2ab2 + 3a2c)

Правило:

Если все члены многочлена имеют общий множитель (или несколько общих множителей), то этот множитель (эти множители) можно вынести за скобку,
при этом каждое слагаемое делим на выражение, которое выносим за скобку: 5ab2c3: 5abc = bc2 , - 10a2b3c: 5abc = - 2ab2 и, наконец, 15a3bc2: 5abc = 3a2c (следите за знаками!!!)

И надо помнить - за скобку выносится степень с меньшим показателем.

Самостоятельно:
Вынесите общий множитель за скобку

Проверь:

Иногда все члены алгебраического выражения не имею общего множителя, но в отдельных группах слагаемых он есть, например,

ах + ay + bx + by.

Этот многочлен можно разложить на множители, соединяя его члены в отдельные группы

(ax + bx) + (ay + by) = x(a + b) + y(a + b) = (x + y)(a + b).

Пример:

Применяя метод группировки слагаемых разложите выражение на множители
3x + xy2 - x2y - 3y

Решение:
3x + xy2 - x2y - 3y = 3(x - y) + xy(y -x) = 3(x - y) - xy(x -y) = (3 - xy)(x - y).

Потренируемся еще:
1) a3 - ab - a2b + a2 ,
2) ab2 - b2y - ax + xy + b2 - x .

Решение:
1) a3 - ab - a2b + a2 = a3 - a2b - ab + a2 = a2(a - b) + a(a - b)= (a2+ a)(a - b) = a(a +1)(a - b),
2) ab2 - b2y - ax + xy + b2 - x = b2(a - y + 1) - x(a - y + 1) = (b2 - x)(a - y + 1).

А теперь о 2-м методе.
Если слагаемые алгебраического выражения не имеют повторяющихся множителей, то можно попытаться применить формулы сокращенного умножения...

Примеры
а) Разность квадратов:
0,49х4 - 121y2 = (0,7x2)2 - (11y)2 = (0,7x2 - 11y)(0,7x2 + 11y),

Б) Разность кубов:
1 - 27с3 = 13 - (3с)3 = (1 - 3с)(1 + 3с + 9с2),

В) Квадрат разности:
4a2 - 12ab + 9b2 = (2a)2 - 22a 3b + (3b)2 = (2a - 3b)2 или (2a - 3b)(2a - 3b),

Г) Куб разности:
27x6 - 27x4y + 9x2y2 - y3 = (3x2)3 - 3(3x2)2y + 3(3x2)y2 - y3 = (3x2 - y)3 или (3x2 - y)(3x2 - y)(3x2 - y) т.е. три равных множителя!

Алгоритм:
- сначала "подгоняем внешний вид выражения" под возможную для применения формулу...
- если получилось - действуем далее как она (формула) того требует...
- если не получилось, то начинаем "примерять" другую формулу...
- и так пока не получится разложить выражение на произведение множителей!

Из курса алгебры школьной программы переходим к конкретике. В этой статье мы подробно изучим особый вид рациональных выраженийрациональные дроби , а также разберем, какие характерные тождественные преобразования рациональных дробей имеют место.

Сразу отметим, что рациональные дроби в том смысле, в котором мы их определим ниже, в некоторых учебниках алгебры называют алгебраическими дробями. То есть, в этой статье мы под рациональными и алгебраическими дробями будем понимать одно и то же.

По обыкновению начнем с определения и примеров. Дальше поговорим про приведение рациональной дроби к новому знаменателю и о перемене знаков у членов дроби. После этого разберем, как выполняется сокращение дробей. Наконец, остановимся на представлении рациональной дроби в виде суммы нескольких дробей. Всю информацию будем снабжать примерами с подробными описаниями решений.

Навигация по странице.

Определение и примеры рациональных дробей

Рациональные дроби изучаются на уроках алгебры в 8 классе. Мы будем использовать определение рациональной дроби, которое дается в учебнике алгебры для 8 классов Ю. Н. Макарычева и др.

В данном определении не уточняется, должны ли многочлены в числителе и знаменателе рациональной дроби быть многочленами стандартного вида или нет. Поэтому, будем считать, что в записях рациональных дробей могут содержаться как многочлены стандартного вида, так и не стандартного.

Приведем несколько примеров рациональных дробей . Так , x/8 и - рациональные дроби. А дроби и не подходят под озвученное определение рациональной дроби, так как в первой из них в числителе стоит не многочлен, а во второй и в числителе и в знаменателе находятся выражения, не являющиеся многочленами.

Преобразование числителя и знаменателя рациональной дроби

Числитель и знаменатель любой дроби представляют собой самодостаточные математические выражения, в случае рациональных дробей – это многочлены, в частном случае – одночлены и числа. Поэтому, с числителем и знаменателем рациональной дроби, как и с любым выражением, можно проводить тождественные преобразования. Иными словами, выражение в числителе рациональной дроби можно заменять тождественно равным ему выражением, как и знаменатель.

В числителе и знаменателе рациональной дроби можно выполнять тождественные преобразования . Например, в числителе можно провести группировку и приведение подобных слагаемых, а в знаменателе – произведение нескольких чисел заменить его значением. А так как числитель и знаменатель рациональной дроби есть многочлены, то с ними можно выполнять и характерные для многочленов преобразования, например, приведение к стандартному виду или представление в виде произведения.

Для наглядности рассмотрим решения нескольких примеров.

Пример.

Преобразуйте рациональную дробь так, чтобы в числителе оказался многочлен стандартного вида, а в знаменателе – произведение многочленов.

Решение.

Приведение рациональных дробей к новому знаменателю в основном применяется при сложении и вычитании рациональных дробей .

Изменение знаков перед дробью, а также в ее числителе и знаменателе

Основное свойство дроби можно использовать для смены знаков у членов дроби. Действительно, умножение числителя и знаменателя рациональной дроби на -1 равносильно смене их знаков, а в результате получится дробь, тождественно равная данной. К такому преобразованию приходится достаточно часто обращаться при работе с рациональными дробями.

Таким образом, если одновременно изменить знаки у числителя и знаменателя дроби, то получится дробь, равная исходной. Этому утверждению отвечает равенство .

Приведем пример. Рациональную дробь можно заменить тождественно равной ей дробью с измененными знаками числителя и знаменателя вида .

С дробями можно провести еще одно тождественное преобразование, при котором меняется знак либо в числителе, либо в знаменателе. Озвучим соответствующее правило. Если заменить знак дроби вместе со знаком числителя или знаменателя, то получится дробь, тождественно равная исходной. Записанному утверждению соответствуют равенства и .

Доказать эти равенства не составляет труда. В основе доказательства лежат свойства умножения чисел. Докажем первое из них: . С помощью аналогичных преобразований доказывается и равенство .

Например, дробь можно заменить выражением или .

В заключение этого пункта приведем еще два полезных равенства и . То есть, если изменить знак только у числителя или только у знаменателя, то дробь изменит свой знак. Например, и .

Рассмотренные преобразования, позволяющие изменять знак у членов дроби, часто применяются при преобразовании дробно рациональных выражений.

Сокращение рациональных дробей

В основе следующего преобразования рациональных дробей, имеющего название сокращение рациональных дробей, лежит все тоже основное свойство дроби. Этому преобразованию соответствует равенство , где a , b и c – некоторые многочлены, причем b и c - ненулевые.

Из приведенного равенства становится понятно, что сокращение рациональной дроби подразумевает избавление от общего множителя в ее числителе и знаменателе.

Пример.

Сократите рациональную дробь .

Решение.

Сразу виден общий множитель 2 , выполним сокращение на него (при записи общие множители, на которые сокращают, удобно зачеркивать). Имеем . Так как x 2 =x·x и y 7 =y 3 ·y 4 (при необходимости смотрите ), то понятно, что x является общим множителем числителя и знаменателя полученной дроби, как и y 3 . Проведем сокращение на эти множители: . На этом сокращение завершено.

Выше мы выполняли сокращение рациональной дроби последовательно. А можно было выполнить сокращение в один шаг, сразу сократив дробь на 2·x·y 3 . В этом случае решение выглядело бы так: .

Ответ:

.

При сокращении рациональных дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель рациональной дроби разложить на множители. Если общего множителя нет, то исходная рациональная дробь не нуждается в сокращении, в противном случае – проводится сокращение.

В процессе сокращения рациональных дробей могут возникать различные нюансы. Основные тонкости на примерах и в деталях разобраны в статье сокращение алгебраических дробей .

Завершая разговор о сокращении рациональных дробей, отметим, что это преобразование является тождественным, а основная сложность в его проведении заключается в разложении на множители многочленов в числителе и знаменателе.

Представление рациональной дроби в виде суммы дробей

Достаточно специфическим, но в некоторых случаях очень полезным, оказывается преобразование рациональной дроби, заключающееся в ее представлении в виде суммы нескольких дробей, либо сумме целого выражения и дроби.

Рациональную дробь, в числителе которой находится многочлен, представляющий собой сумму нескольких одночленов, всегда можно записать как сумму дробей с одинаковыми знаменателями, в числителях которых находятся соответствующие одночлены. Например, . Такое представление объясняется правилом сложения и вычитания алгебраических дробей с одинаковыми знаменателями .

Вообще, любую рациональную дробь можно представить в виде суммы дробей множеством различных способов. Например, дробь a/b можно представить как сумму двух дробей – произвольной дроби c/d и дроби, равной разности дробей a/b и c/d . Это утверждение справедливо, так как имеет место равенство . К примеру, рациональную дробь можно представить в виде суммы дробей различными способами: Представим исходную дробь в виде суммы целого выражения и дроби. Выполнив деление числителя на знаменатель столбиком, мы получим равенство . Значение выражение n 3 +4 при любом целом n является целым числом. А значение дроби является целым числом тогда и только тогда, когда ее знаменатель равен 1 , −1 , 3 или −3 . Этим значениям отвечают значения n=3 , n=1 , n=5 и n=−1 соответственно.

Ответ:

−1 , 1 , 3 , 5 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 13-е изд., испр. - М.: Мнемозина, 2009. - 160 с.: ил. ISBN 978-5-346-01198-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Прежде всего, чтобы научиться работать с рациональными дробями без ошибок, необходимо выучить формулы сокращённого умножения. И не просто выучить — их необходимо распознавать даже тогда, когда в роли слагаемых выступают синусы, логарифмы и корни.

Однако основным инструментом остаётся разложение числителя и знаменателя рациональной дроби на множители. Этого можно добиться тремя различными способами:

  1. Собственно, по формула сокращённого умножения: они позволяют свернуть многочлен в один или несколько множителей;
  2. С помощью разложения квадратного трёхчлена на множители через дискриминант. Этот же способ позволяет убедиться, что какой-либо трёхчлен на множители вообще не раскладывается;
  3. Метод группировки — самый сложный инструмент, но это единственный способ, который работает, если не сработали два предыдущих.

Как вы уже, наверное, догадались из названия этого видео, мы вновь поговорим о рациональных дробях. Буквально несколько минут назад у меня закончилось занятие с одним десятиклассником, и там мы разбирали именно эти выражения. Поэтому данный урок будет предназначен именно для старшеклассников.

Наверняка у многих сейчас возникнет вопрос: «Зачем ученикам 10-11 классов изучать такие простые вещи как рациональные дроби, ведь это проходится в 8 классе?». Но в том то и беда, что большинство людей эту тему именно «проходят». Они в 10-11 классе уже не помнят, как делается умножение, деление, вычитание и сложение рациональных дробей из 8-го класса, а ведь именно на этих простых знаниях строятся дальнейшие, более сложные конструкции, как решение логарифмических, тригонометрических уравнений и многих других сложных выражений, поэтому без рациональных дробей делать в старших классах практически нечего.

Формулы для решения задач

Давайте перейдем к делу. Прежде всего, нам потребуется два факта — два комплекта формул. Прежде всего, необходимо знать формулы сокращенного умножения:

  • ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  • ${{a}^{2}}\pm 2ab+{{b}^{2}}={{\left(a\pm b \right)}^{2}}$ — квадрат суммы или разности;
  • ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  • ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

В чистом виде они ни в каких примерах и в реальных серьезных выражениях не встречаются. Поэтому наша задача состоит в том, чтобы научиться видеть под буквами $a$ и $b$ гораздо более сложные конструкции, например, логарифмы, корни, синусы и т.д. Научиться видеть это можно лишь при помощи постоянной практики. Именно поэтому решать рациональные дроби совершенно необходимо.

Вторая, совершенно очевидная формула — это разложение квадратного трехчлена на множители:

${{x}_{1}}$; ${{x}_{2}}$ — корни.

С теоретической частью мы разобрались. Но как решать реальные рациональные дроби, которые рассматриваются в 8 классе? Сейчас мы и потренируемся.

Задача № 1

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{3}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Давайте попробуем применить вышеописанные формулы к решению рациональных дробей. Прежде всего, хочу объяснить, зачем вообще нужно разложение на множители. Дело в том, что при первом взгляде на первую часть задания хочется сократить куб с квадратом, но делать этого категорически нельзя, потому что они являются слагаемыми в числителе и в знаменателе, но ни в коем случае не множителями.

Вообще, что такое сокращение? Сокращение — это использование основного правила работы с такими выражениями. Основное свойство дроби заключается в том, что мы можем числитель и знаменатель можем умножить на одно и то же число, отличное от «нуля». В данном случае, когда мы сокращаем, то, наоборот, делим на одно и то же число, отличное от «нуля». Однако мы должны все слагаемые, стоящие в знаменателе, разделить на одно и то же число. Делать так нельзя. И сокращать числитель со знаменателем мы вправе лишь тогда, когда оба они разложены на множители. Давайте это и сделаем.

Теперь необходимо посмотреть, сколько слагаемых находится в том или ином элементе, в соответствии с этим узнать, какую формулу необходимо использовать.

Преобразуем каждое выражение в точный куб:

Перепишем числитель:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

Давайте посмотрим на знаменатель. Разложим его по формуле разности квадратов:

\[{{b}^{2}}-4={{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Теперь посмотрим на вторую часть выражения:

Числитель:

Осталось разобраться со знаменателем:

\[{{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем всю конструкцию с учетом вышеперечисленных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Нюансы умножения рациональных дробей

Ключевой вывод из этих построений следующий:

  • Далеко не каждый многочлен раскладывается на множители.
  • Даже если он и раскладывается, необходимо внимательно смотреть, по какой именно формуле сокращенного умножения.

Для этого, во-первых, нужно оценить, сколько всего слагаемых (если их два, то все, что мы можем сделать, то это разложить их либо по сумме разности квадратов, либо по сумме или разности кубов; а если их три, то это, однозначно, либо квадрат суммы, либо квадрат разности). Очень часто бывает так, что или числитель, или знаменатель вообще не требует разложения на множители, он может быть линейным, либо дискриминант его будет отрицательным.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

В целом, схема решения этой задачи ничем не отличается от предыдущей — просто действий будет больше, и они станут разнообразнее.

Начнем с первой дроби: посмотрим на ее числитель и сделаем возможные преобразования:

Теперь посмотрим на знаменатель:

Со второй дробью: в числителе вообще ничего нельзя сделать, потому что это линейное выражение, и вынести из него какой-либо множитель нельзя. Посмотрим на знаменатель:

\[{{x}^{2}}-4x+4={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Идем к третьей дроби. Числитель:

Разберемся со знаменателем последней дроби:

Перепишем выражение с учетом вышеописанных фактов:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+4 \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{-3}{2\left(2-x \right)}=-\frac{3}{2\left(2-x \right)}=\frac{3}{2\left(x-2 \right)}\]

Нюансы решения

Как видите, далеко не все и не всегда упирается в формулы сокращенного умножения — иногда просто достаточно вынести за скобки константу или переменную. Однако бывает и обратная ситуация, когда слагаемых настолько много или они так построены, что формулы сокращенного умножения к ним вообще невозможно. В этом случае к нам на помощь приходит универсальный инструмент, а именно, метод группировки. Именно это мы сейчас и применим в следующей задаче.

Задача № 3

\[\frac{{{a}^{2}}+ab}{5a-{{a}^{2}}+{{b}^{2}}-5b}\cdot \frac{{{a}^{2}}-{{b}^{2}}+25-10a}{{{a}^{2}}-{{b}^{2}}}\]

Разберем первую часть:

\[{{a}^{2}}+ab=a\left(a+b \right)\]

\[=5\left(a-b \right)-\left(a-b \right)\left(a+b \right)=\left(a-b \right)\left(5-1\left(a+b \right) \right)=\]

\[=\left(a-b \right)\left(5-a-b \right)\]

Давайте перепишем исходное выражение:

\[\frac{a\left(a+b \right)}{\left(a-b \right)\left(5-a-b \right)}\cdot \frac{{{a}^{2}}-{{b}^{2}}+25-10a}{{{a}^{2}}-{{b}^{2}}}\]

Теперь разберемся со второй скобкой:

\[{{a}^{2}}-{{b}^{2}}+25-10a={{a}^{2}}-10a+25-{{b}^{2}}=\left({{a}^{2}}-2\cdot 5a+{{5}^{2}} \right)-{{b}^{2}}=\]

\[={{\left(a-5 \right)}^{2}}-{{b}^{2}}=\left(a-5-b \right)\left(a-5+b \right)\]

Так как два элемента не получилось сгруппировать, то мы сгруппировали три. Осталось разобраться лишь со знаменателем последней дроби:

\[{{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)\]

Теперь перепишем всю нашу конструкцию:

\[\frac{a\left(a+b \right)}{\left(a-b \right)\left(5-a-b \right)}\cdot \frac{\left(a-5-b \right)\left(a-5+b \right)}{\left(a-b \right)\left(a+b \right)}=\frac{a\left(b-a+5 \right)}{{{\left(a-b \right)}^{2}}}\]

Задача решена, и больше ничего упростить здесь нельзя.

Нюансы решения

С группировкой мы разобрались и получили еще один очень мощный инструмент, который расширяет возможности по разложению на множители. Но проблема в том, что в реальной жизни нам никто не будет давать вот такие рафинированные примеры, где есть несколько дробей, у которых нужно лишь разложить на множитель числитель и знаменатель, а потом по возможности их сократить. Реальные выражения будут гораздо сложнее.

Скорее всего, помимо умножения и деления там будут присутствовать вычитания и сложения, всевозможные скобки — вообщем, придется учитывать порядок действий. Но самое страшное, что при вычитании и сложении дробей с разными знаменателями их придется приводить к одному общему. Для этого каждый из них нужно будет раскладывать на множители, а потом преобразовывать эти дроби: приводить подобные и многое другое. Как это сделать правильно, быстро, и при этом получить однозначно правильный ответ? Именно об этом мы и поговорим сейчас на примере следующей конструкции.

Задача № 4

\[\left({{x}^{2}}+\frac{27}{x} \right)\cdot \left(\frac{1}{x+3}+\frac{1}{{{x}^{2}}-3x+9} \right)\]

Давайте выпишем первую дробь и попытаемся разобраться с ней отдельно:

\[{{x}^{2}}+\frac{27}{x}=\frac{{{x}^{2}}}{1}+\frac{27}{x}=\frac{{{x}^{3}}}{x}+\frac{27}{x}=\frac{{{x}^{3}}+27}{x}=\frac{{{x}^{3}}+{{3}^{3}}}{x}=\]

\[=\frac{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}{x}\]

Переходим ко второй. Сразу посчитаем дискриминант знаменателя:

Он на множители не раскладывается, поэтому запишем следующее:

\[\frac{1}{x+3}+\frac{1}{{{x}^{2}}-3x+9}=\frac{{{x}^{2}}-3x+9+x+3}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}=\]

\[=\frac{{{x}^{2}}-2x+12}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}\]

Числитель выпишем отдельно:

\[{{x}^{2}}-2x+12=0\]

Следовательно, этот многочлен на множители не раскладывается.

Максимум, что мы могли сделать и разложить, мы уже сделали.

Итого переписываем нашу исходную конструкцию и получаем:

\[\frac{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}{x}\cdot \frac{{{x}^{2}}-2x+12}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}=\frac{{{x}^{2}}-2x+12}{x}\]

Все, задача решена.

Если честно, это была не такая уж и сложная задача: там все легко раскладывалось на множители, быстро приводились подобные слагаемые, и все красиво сокращалось. Поэтому сейчас давайте попробуем решить задачку посерьезней.

Задача № 5

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала давайте разберемся с первой скобкой. С самого начала разложим на множители знаменатель второй дроби отдельно:

\[{{x}^{3}}-8={{x}^{3}}-{{2}^{3}}=\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)\]

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{{{x}^{2}}}=\]

\[=\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{2}}+8-\left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\]

\[=\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Теперь поработаем со второй дробью:

\[\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x}=\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}-\frac{2}{2-x}=\frac{{{x}^{2}}+2\left(x-2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\]

\[=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Возвращаемся к нашей исходной конструкции и записываем:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ключевые моменты

Еще раз ключевые факты сегодняшнего видеоурока:

  1. Необходимо знать «назубок» формулы сокращенного умножения — и не просто знать, а уметь видеть в тех выражениях, которые будут вам встречаться в реальных задачах. Помочь нам в этом может замечательное правило: если слагаемых два, то это либо разность квадратов, либо разность или сумма кубов; если три — это может быть только квадрат суммы или разности.
  2. Если какая-либо конструкция не раскладывается при помощи формул сокращенного умножения, то нам на помощь приходит либо стандартная формула разложения трехчленов на множители, либо метод группировки.
  3. Если что-то не получается, внимательно посмотрите на исходное выражение — а требуются ли вообще какие-то преобразования с ним. Возможно, достаточно будет просто вынести множитель за скобку, а это очень часто бывает просто константа.
  4. В сложных выражениях, где требуется выполнить несколько действий подряд, не забывайте приводить к общему знаменателю, и лишь после этого, когда все дроби приведены к нему, обязательно приведите подобное в новом числителе, а потом новый числитель еще раз разложите на множители — возможно, что-то сократится.

Вот и все, что я хотел вам рассказать сегодня о рациональных дробях. Если что-то непонятно — на сайте еще куча видеоуроков, а также куча задач для самостоятельного решения. Поэтому оставайтесь с нами!

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или рациональной дробью . Если более точно, то это рациональная функция одной переменной (т.е. переменной $x$).

Рациональная дробь называется правильной , если $n < m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильной .

Пример №1

Указать, какие из приведённых ниже дробей являются рациональными. Если дробь является рациональной, то выяснить, правильная она или нет.

  1. $\frac{3x^2+5\sin x-4}{2x+5}$;
  2. $\frac{5x^2+3x-8}{11x^9+25x^2-4}$;
  3. $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$;
  4. $\frac{3}{(5x^6+4x+19)^4}$.

1) Данная дробь не является рациональной, поскольку содержит $\sin x$. Рациональная дробь этого не допускает.

2) Мы имеем отношение двух многочленов: $5x^2+3x-8$ и $11x^9+25x^2-4$. Следовательно, согласно определению, выражение $\frac{5x^2+3x-8}{11x^9+25x^2-4}$ есть рациональная дробь. Так как степень многочлена в числителе равна $2$, а степень многочлена в знаменателе равна $9$, то данная дробь является правильной (ибо $2 < 9$).

3) И в числителе, и в знаменателе данной дроби расположены многочлены (разложенные на множители). Нам совершенно неважно, в какой форме представлены многочлены числителя и знаменателя: разложены они на множители или нет. Так как мы имеем отношение двух многочленов, то согласно определению выражение $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$ есть рациональная дробь.

Дабы ответить на вопрос о том, является ли данная дробь правильной, следует определить степени многочленов в числителе и знаменателе. Начнём с числителя, т.е. с выражения $(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)$. Для определения степени этого многочлена можно, конечно, раскрыть скобки. Однако разумно поступить гораздо проще, ибо нас интересует лишь наибольшая степень переменной $x$. Выберем из каждой скобки переменную $x$ в наибольшей степени. Из скобки $(2x^3+8x+4)$ возьмём $x^3$, из скобки $(8x^4+5x^3+x+9)^9$ возьмём $(x^4)^9=x^{4\cdot9}=x^{36}$, а из скобки $(5x^7+x^6+9x^5+3)$ выберем $x^7$. Тогда после раскрытия скобок наибольшая степень переменной $x$ будет такой:

$$ x^3\cdot x^{36}\cdot x^7=x^{3+36+7}=x^{46}. $$

Степень многочлена, расположенного в числителе, равна $46$. Теперь обратимся к знаменателю, т.е. к выражению $(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)$. Степень этого многочлена определяется так же, как и для числителя, т.е.

$$ x\cdot (x^2)^{15}\cdot x^{10}=x^{1+30+10}=x^{41}. $$

В знаменателе расположен многочлен 41-й степени. Так как степень многочлена в числителе (т.е. 46) не меньше степени многочлена в знаменателе (т.е. 41), то рациональная дробь $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$ является неправильной.

4) В числителе дроби $\frac{3}{(5x^6+4x+19)^4}$ стоит число $3$, т.е. многочлен нулевой степени. Формально числитель можно записать так: $3x^0=3\cdot1=3$. В знаменателе имеем многочлен, степень которого равна $6\cdot 4=24$. Отношение двух многочленов есть рациональная дробь. Так как $0 < 24$, то данная дробь является правильной.

Ответ : 1) дробь не является рациональной; 2) рациональная дробь (правильная); 3) рациональная дробь (неправильная); 4) рациональная дробь (правильная).

Теперь перейдём к понятию элементарных дробей (их ещё именуют простейшими рациональными дробями). Существуют четыре типа элементарных рациональных дробей:

  1. $\frac{A}{x-a}$;
  2. $\frac{A}{(x-a)^n}$ ($n=2,3,4,\ldots$);
  3. $\frac{Mx+N}{x^2+px+q}$ ($p^2-4q < 0$);
  4. $\frac{Mx+N}{(x^2+px+q)^n}$ ($p^2-4q < 0$; $n=2,3,4,\ldots$).

Примечание (желательное для более полного понимания текста): показать\скрыть

Зачем нужно условие $p^2-4q < 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Например, для выражения $x^2+5x+10$ получим: $p^2-4q=5^2-4\cdot 10=-15$. Так как $p^2-4q=-15 < 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

Кстати сказать, для этой проверки вовсе не обязательно, чтобы коэффициент перед $x^2$ равнялся 1. Например, для $5x^2+7x-3=0$ получим: $D=7^2-4\cdot 5 \cdot (-3)=109$. Так как $D > 0$, то выражение $5x^2+7x-3$ разложимо на множители.

Задача состоит в следующем: заданную правильную рациональную дробь представить в виде суммы элементарных рациональных дробей. Решению этой задачи и посвящён материал, изложенный на данной странице. Для начала нужно убедиться, что выполнено следующее условие: многочлен в знаменателе правильной рациональной дроби разложен на множители таким образом, что оное разложение содержит лишь скобки вида $(x-a)^n$ или $(x^2+px+q)^n$ ($p^2-4q < 0$).Грубо говоря, это требование означает необходимость максимального разложения многочлена в знаменателе, т.е. чтобы дальнейшее разложение было невозможно. Только если это условие выполнено, то можно применять такую схему:

  1. Каждой скобке вида $(x-a)$, расположенной в знаменателе, соответствует дробь $\frac{A}{x-a}$.
  2. Каждой скобке вида $(x-a)^n$ ($n=2,3,4,\ldots$), расположенной в знаменателе, соответствует сумма из $n$ дробей: $\frac{A_1}{x-a}+\frac{A_2}{(x-a)^2}+\frac{A_3}{(x-a)^3}+\ldots+\frac{A_n}{(x-a)^n}$.
  3. Каждой скобке вида $(x^2+px+q)$ ($p^2-4q < 0$), расположенной в знаменателе, соответствует дробь $\frac{Cx+D}{x^2+px+q}$.
  4. Каждой скобке вида $(x^2+px+q)^n$ ($p^2-4q < 0$; $n=2,3,4,\ldots$), расположенной в знаменателе, соответствует сумма из $n$ дробей: $\frac{C_1x+D_1}{x^2+px+q}+\frac{C_2x+D_2}{(x^2+px+q)^2}+\frac{C_3x+D_3}{(x^2+px+q)^3}+\ldots+\frac{C_nx+D_n}{(x^2+px+q)^n}$.

Если же дробь неправильная, то перед применением вышеизложенной схемы следует разбить её на сумму целой части (многочлен) и правильной рациональной дроби. Как именно это делается, разберём далее (см. пример №2 пункт 3). Пару слов насчёт буквенных обозначений в числителях (т.е. $A$, $A_1$, $C_2$ и тому подобные). Буквы можно использовать любые - на свой вкус. Важно лишь, чтобы эти буквы были различными во всех элементарных дробях. Чтобы найти значения этих параметров применяют метод неопределённых коэффициентов или метод подстановки частных значений (см. примеры №3, №4 и №5).

Пример №2

Разложить заданные рациональные дроби на элементарные (без нахождения параметров):

  1. $\frac{5x^4-10x^3+x^2-9}{(x-5)(x+2)^4 (x^2+3x+10)(x^2+11)^5}$;
  2. $\frac{x^2+10}{(x-2)^3(x^3-8)(3x+5)(3x^2-x-10)}$;
  3. $\frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}$.

1) Имеем рациональную дробь. В числителе этой дроби расположен многочлен 4-й степени, а в знаменателе многочлен, степень которого равна $17$ (как определить эту степень детально пояснено в пункте №3 примера №1). Так как степень многочлена в числителе меньше степени многочлена в знаменателе, то данная дробь является правильной. Обратимся к наменателю этой дроби. Начнём со скобок $(x-5)$ и $(x+2)^4$, которые полностью подпадают под вид $(x-a)^n$. Кроме того, имеются ещё и скобки $(x^2+3x+10)$ и $(x^2+11)^5$. Выражение $(x^2+3x+10)$ имеет вид $(x^2+px+q)^n$, где $p=3$; $q=10$, $n=1$. Так как $p^2-4q=9-40=-31 < 0$, то данную скобку больше нельзя разложить на множители. Обратимся ко второй скобке, т.е. $(x^2+11)^5$. Это тоже скобка вида $(x^2+px+q)^n$, но на сей раз $p=0$, $q=11$, $n=5$. Так как $p^2-4q=0-121=-121 < 0$, то данную скобку больше нельзя разложить на множители. Итак, мы имеем следующий вывод: многочлен в знаменателе разложен на множители таким образом, что оное разложение содержит лишь скобки вида $(x-a)^n$ или $(x^2+px+q)^n$ ($p^2-4q < 0$). Теперь можно переходить и к элементарным дробям. Мы будем применять правила , изложенные выше. Согласно правилу скобке $(x-5)$ будет соответствовать дробь $\frac{A}{x-5}$. Это можно записать так:

$$ \frac{5x^4-10x^3+x^2-9}{(x-5)(x+2)^4 (x^2+3x+10)(x^2+11)^5}=\frac{A}{x-5}+\ldots $$

Полученный результат можно записать так:

$$ 3x^5-5x^4+10x^3-16x^2-7x+22=(x^3-2x^2+4x-8)(3x^2+x)+4x^2+x+22. $$

Тогда дробь $\frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}$ представима в иной форме:

$$ \frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}=\frac{(x^3-2x^2+4x-8)(3x^2+x)+4x^2+x+22}{x^3-2x^2+4x-8}=\\ =\frac{(x^3-2x^2+4x-8)(3x^2+x)}{x^3-2x^2+4x-8}+\frac{4x^2+x+22}{x^3-2x^2+4x-8}=\\ =3x^2+x+\frac{4x^2+x+22}{x^3-2x^2+4x-8}. $$

Дробь $\frac{4x^2+x+22}{x^3-2x^2+4x-8}$ является правильной рациональной дробью, ибо степень многочлена в числителе (т.е. 2) меньше степени многочлена в знаменателе (т.е. 3). Теперь обратимся к знаменателю данной дроби. В знаменателе расположен многочлен, который нужно разложить на множители. Иногда для разложения на множители полезна схема Горнера , но в нашем случае проще обойтись стандартным "школьным" методом группировки слагаемых:

$$ x^3-2x^2+4x-8=x^2\cdot(x-2)+4\cdot(x-2)=(x-2)\cdot(x^2+4);\\ 3x^2+x+\frac{4x^2+x+22}{x^3-2x^2+4x-8}=3x^2+x+\frac{4x^2+x+22}{(x-2)\cdot(x^2+4)} $$

Применяя те же методы, что и в предыдущих пунктах, получим:

$$ \frac{4x^2+x+22}{(x-2)\cdot(x^2+4)}=\frac{A}{x-2}+\frac{Cx+D}{x^2+4} $$

Итак, окончательно имеем:

$$ \frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}=3x^2+x+\frac{A}{x-2}+\frac{Cx+D}{x^2+4} $$

Продолжение этой темы будет рассмотрено во второй части.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png