Биссектрисой треугольника называется отрезок, который делит угол треугольника на два равных угла. К примеру, если угол треугольника 120 0 , то проведя биссектрису, мы построим два угла по 60 0 .

А так как в треугольнике имеется три угла, то можно провести три биссектрисы. Все они имеют одну точку пресечения. Эта точка является центром окружности, вписанной в треугольник. По-другому эту точку пересечений называют инцентром треугольника.

При пересечении двух биссектрис внутреннего и внешнего угла, получается угол 90 0 . Внешний угол в треугольнике угол, смежный с внутренним углом треугольника.

Рис. 1. Треугольник, в котором проведены 3 биссектрисы

Биссектриса делит противоположную сторону на два отрезки, которые имеют связь со сторонами:

$${CL\over{LB}} = {AC\over{AB}}$$

Точки биссектрисы равноудаленные от сторон угла, это значит, что они находятся на одинаковом расстоянии от сторон угла. То есть, если из любой точки биссектрисы опустить перпендикуляры на каждую из сторон угла треугольника, то эти перпендикуляры будут равны..

Если с одной вершины провести медиану, биссектрису и высоту, то медиана будет самым длинным отрезком, а высота самым коротким.

Некоторые свойства биссектрисы

В определенных видах треугольников, биссектриса имеет особые свойства. В первую очередь это относится к равнобедренному треугольнику. Эта фигура имеет две одинаковые боковые стороны, а третья называется основанием.

Если из вершины угла равнобедренного треугольника провести биссектрису к основанию, то она будет иметь свойства одновременно и высоты и медианы. Соответственно, длина биссектрисы совпадает с длиной медианы и высоты.

Определения:

  • Высота – перпендикуляр, опущенный из вершины треугольника к противоположной стороне..
  • Медиана – отрезок, который соединяет вершину треугольника и середину противоположной стороны.

Рис. 2. Биссектриса в равнобедренном треугольнике

Это касается и равностороннего треугольника, то есть треугольника, в котором все три стороны равны.

Пример задания

В треугольнике ABC: BR биссектриса, причем AB = 6 см, BC = 4 см, а RC = 2 см. Вычесть длину третей стороны.

Рис. 3. Биссектриса в треугольнике

Решение:

Биссектриса делит сторону треугольника в определенной пропорции. Воспользуемся этой пропорцией и выразим AR. После найдем длину третьей стороны как сумму отрезков, на которые эту сторону поделила биссектриса.

  • ${AB\over{BC}} = {AR\over{RC}}$
  • $RC={6\over{4}}*2=3 см$

Тогда весь отрезок AC = RC+ AR

AC = 3+2=5 см.

Всего получено оценок: 107.

Сегодня будет очень лёгкий урок. Мы рассмотрим всего один объект — биссектрису угла — и докажем важнейшее её свойство, которое очень пригодится нам в будущем.

Только не надо расслабляться: иногда ученики, желающие получить высокий балл на том же ОГЭ или ЕГЭ, на первом занятии даже не могут точно сформулировать определение биссектрисы.

И вместо того, чтобы заниматься действительно интересными задачами, мы тратим время на такие простые вещи. Поэтому читайте, смотрите — и берите на вооружение.:)

Для начала немного странный вопрос: что такое угол? Правильно: угол — это просто два луча, выходящих из одной точки. Например:


Примеры углов: острый, тупой и прямой

Как видно из картинки, углы могут быть острыми, тупыми, прямыми — это сейчас неважно. Часто для удобства на каждом луче отмечают дополнительную точку и говорят, мол, перед нами угол $AOB$ (записывается как $\angle AOB$).

Капитан очевидность как бы намекает, что помимо лучей $OA$ и $OB$ из точки $O$ всегда можно провести ещё кучу лучей. Но среди них будет один особенный — его-то и называют биссектрисой.

Определение. Биссектриса угла — это луч, который выходит из вершины этого угла и делит угол пополам.

Для приведённых выше углов биссектрисы будут выглядеть так:


Примеры биссектрис для острого, тупого и прямого угла

Поскольку на реальных чертежах далеко не всегда очевидно, что некий луч (в нашем случае это луч $OM$) разбивает исходный угол на два равных, в геометрии принято помечать равные углы одинаковым количеством дуг (у нас на чертеже это 1 дуга для острого угла, две — для тупого, три — для прямого).

Хорошо, с определением разобрались. Теперь нужно понять, какие свойства есть у биссектрисы.

Основное свойство биссектрисы угла

На самом деле у биссектрисы куча свойств. И мы обязательно рассмотрим их в следующем уроке. Но есть одна фишка, которую нужно понять прямо сейчас:

Теорема. Биссектриса угла — это геометрическое место точек, равноудалённых от сторон данного угла.

В переводе с математического на русский это означает сразу два факта:

  1. Всякая точка, лежащая на биссектрисе некого угла, находится на одинаковом расстоянии от сторон этого угла.
  2. И наоборот: если точка лежит на одинаковом расстоянии от сторон данного угла, то она гарантированно лежит на биссектрисе этого угла.

Прежде чем доказывать эти утверждения, давайте уточним один момент: а что, собственно, называется расстоянием от точки до стороны угла? Здесь нам поможет старое-доброе определение расстояния от точки до прямой:

Определение. Расстояние от точки до прямой — это длина перпендикуляра, проведённого из данной точки к этой прямой.

Например, рассмотрим прямую $l$ и точку $A$, не лежащую на этой прямой. Проведём перпендикуляр $AH$, где $H\in l$. Тогда длина этого перпендикуляра и будет расстоянием от точки $A$ до прямой $l$.

Графическое представление расстояния от точки до прямой

Поскольку угол — это просто два луча, а каждый луч — это кусок прямой, легко определить расстояние от точки до сторон угла. Это просто два перпендикуляра:


Определяем расстояние от точки до сторон угла

Вот и всё! Теперь мы знаем, что такое расстояние и что такое биссектриса. Поэтому можно доказывать основное свойство.

Как и обещал, разобьём доказательство на две части:

1. Расстояния от точки на биссектрисе до сторон угла одинаковы

Рассмотрим произвольный угол с вершиной $O$ и биссектрисой $OM$:

Докажем, что эта самая точка $M$ находится на одинаковом расстоянии от сторон угла.

Доказательство. Проведём из точки $M$ перпендикуляры к сторонам угла. Назовём их $M{{H}_{1}}$ и $M{{H}_{2}}$:

Провели перпендикуляры к сторонам угла

Получили два прямоугольных треугольника: $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$. У них общая гипотенуза $OM$ и равные углы:

  1. $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$ по условию (поскольку $OM$ — биссектриса);
  2. $\angle M{{H}_{1}}O=\angle M{{H}_{2}}O=90{}^\circ $ по построению;
  3. $\angle OM{{H}_{1}}=\angle OM{{H}_{2}}=90{}^\circ -\angle MO{{H}_{1}}$, поскольку сумма острых углов прямоугольного треугольника всегда равна 90 градусов.

Следовательно, треугольники равны по стороне и двум прилежащим углам (см. признаки равенства треугольников). Поэтому, в частности, $M{{H}_{2}}=M{{H}_{1}}$, т.е. расстояния от точки $O$ до сторон угла действительно равны. Что и требовалось доказать.:)

2. Если расстояния равны, то точка лежит на биссектрисе

Теперь обратная ситуация. Пусть дан угол $O$ и точка $M$, равноудалённая от сторон этого угла:

Докажем, что луч $OM$ — биссектриса, т.е. $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$.

Доказательство. Для начала проведём этот самый луч $OM$, иначе доказывать будет нечего:

Провели луч $OM$ внутри угла

Снова получили два прямоугольных треугольника: $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$. Очевидно, что они равны, поскольку:

  1. Гипотенуза $OM$ — общая;
  2. Катеты $M{{H}_{1}}=M{{H}_{2}}$ по условию (ведь точка $M$ равноудалена от сторон угла);
  3. Оставшиеся катеты тоже равны, т.к. по теореме Пифагора $OH_{1}^{2}=OH_{2}^{2}=O{{M}^{2}}-MH_{1}^{2}$.

Следовательно, треугольники $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$ по трём сторонам. В частности, равны их углы: $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$. А это как раз и означает, что $OM$ — биссектриса.

В заключение доказательства отметим красными дугами образовавшиеся равные углы:

Биссектриса разбила угол $\angle {{H}_{1}}O{{H}_{2}}$ на два равных

Как видите, ничего сложного. Мы доказали, что биссектриса угла — это геометрическое место точек, равноудалённых до сторон этого угла.:)

Теперь, когда мы более-менее определились с терминологией, пора переходить на новый уровень. В следующем уроке мы разберём более сложные свойства биссектрисы и научимся применять их для решения настоящих задач.

Тема урока

Биссектриса угла

Цели урока

Пополнить знания школьников о биссектрисе угла и ее свойствах;
Ознакомить с новой информацией о биссектрисе угла;
Расширить знания учеников о том, что теорему о свойствах биссектрисы можно доказывать разными способами;
Развивать логическое мышление, интерес к математическим наукам, настойчивость и способность к анализу.

Задачи урока

Расширить знания учеников о биссектрисе угла;
Закрепить навыки построения биссектрисы угла при помощи чертежных инструментов;
Получить дополнительные и интересные сведения по данной теме;
Дать сведения о значении теоремы в развитии математики;
Закрепить полученные знания путем решения задач;
Воспитывать усидчивость, любознательность и желание изучать математические науки.

План урока

1. Раскрытие главной темы урока о биссектрисе угла;
2. Повторение пройденного материала;
3. Занимательная информация о биссектрисе.
4. Историческая справка, греческая геометрия.
5. Домашнее задание.

Биссектриса угла

Сегодняшний урок мы с вами посвятим теме биссектрисы. Давайте вспомним определения биссектрисы.

Биссектрисой является геометрическое место точек, равноудаленное от сторон угла.

Если говорить проще, то биссектриса – это линия, разделяющая угол пополам.

Биссектрисой угла - луч, выходящий из вершины угла и делящий его на два других равных угла.

Слово «биссектриса» в переводе с французского языка обозначает, как надвое рассекающая или равноделящая угол пополам.

Биссектриса треугольника

Кроме биссектрисы угла еще бывает биссектриса треугольника, ведь треугольник содержит целых три угла, соответственно каждый треугольник может иметь три разных биссектрисы.

Что же такое биссектриса треугольника? Биссектриса треугольника является отрезком биссектрисы угла, соединяющим в треугольнике его вершину с точкой на противоположной стороне.



Биссектриса треугольник обладает определенными уникальными свойствами. Так, например, она разделяет противоположную сторону на отрезки, которые являют пропорциональными другим двум сторонам.



Что касается прямоугольного треугольника, то его биссектрисы именно острых углов, когда пересекаются, образуют угол именно в 45 градусов.

К тому же, не стоит забывать и такое свойство биссектрис треугольника, как то, что пересекаются они строго в центре вписанного в треугольник круга.

Ну а самое интересное то, что для равнобедренного треугольника линия, которая проведена к основанию, будет и биссектрисой, и медианой, и высотой. Соответственно и обратное правило, что если медиана, высота и биссектриса, которое проведены из одной вершины треугольника, совпадают, то перед нами равнобедренный треугольник.

А какие вы можете вспомнить свойства прямоугольного и равнобедренного треугольника?

Построение биссектрисы

Биссектрису угла строится с помощью транспортира, при использовнии его градусной меры. Чтобы приступить к построению биссектрисы, мы берем и делим градусную меру пополам и, отложив на одной стороне вершины градусную меру половинного угла, и тогда вторая половина становится биссектрисой заданного угла.



Берем заданный угол, который имеет градусную меру в девяносто градусов, и с помощью биссектрисы получаем два построенных угла по 45 градусов.

Развернутый угол при помощи биссектрисы разделяет угол на 2 прямых угла. Тупой же угол при построении биссектрисы разделяет его на 2 острых угла.

Из определения биссектрисы нам известно, что она является лучом, разделяющим угол пополам. Чтобы построить биссектрису, значит, нужно угол разделить пополам.

Алгоритм построения биссектрисы угла

1. Вначале чертим окружность с центром в вершине угла таким образом, чтобы она пересекала его стороны.



3. Чертим 2 окружности радиусом так, чтобы они имели точку пересечения внутри этого угла.



4. Теперь проводим из вершины угла луч таким методом, чтобы он проходил через точку пересечения этих окружностей. Этот луч и является биссектрисой данного угла.



А теперь давайте попробуем доказать, что полученный луч является биссектрисой этого угла. Возьмем на примере двух треугольников, у которых одна сторона общая, то есть отрезок от вершины до точки пересечения окружностей, которую мы получили в 3п.

2-я пара соответствующих сторон – это полученные в 1п., отрезки, которые идут от вершины угла до точек пересечения окружности с его сторонами.

Третья пара соответствующих сторон - это соответственно отрезки, полученные в 1п. от точек пересечения окружности, до точки пересечения окружностей, но полученных в 3п.

Следовательно, 2 пары данных отрезков равны, поскольку являются радиусами одной или двух окружностей, но с одинаковым радиусом. Отсюда следует, что по всем трем сторонам треугольники равны. Известно, что когда треугольники равны, то равны и их углы. Поэтому при вершине два новых угла и данных угла по условию задачи равны, следовательно, что построенный луч будет биссектрисой.

Занимательная информация о биссектрисе

Знали ли вы, что существует такая наука, которая называется мнемоника, что в переводе с греческого языка обозначает искусство запоминания. И чтобы лучше запомнить определение биссектрисы существует такое мнемоническое правило, по которому биссектриса – это крыса, которая бегает по углам и делит угол пополам.



Известно ли вам, что еще Архимед использовал теорему о биссектрисе. Он ее применял для деления основания на части, которые пропорциональны боковым сторонам с целью определения длины полу сторон двенадцати угольника, 24-угольника и т. д.

Легенда о биссектрисе угла

Сказка о двух Углах и Биссектрисе, или Образование Смежного угла.

Однажды два угла повстречались на одной площади. Старшему углу было около 130 градусов, а младшему всего пятьдесят. Так как это сказка, то заменим годы на градусы. Вот они встретились и начали спорить, кто из них лучше и важнее. Старший считал, что приоритет на его стороне, так как он старше, мудрее и больше на своем веку повидал за свои 130°. Младший наоборот твердил, что он моложе, потому сильнее и выносливее. И чтобы спор не длился вечность, они приняли решение провести турнир. Об этих состязаниях узнала Биссектриса и решила победить своих врагов одновременно и возглавить Геометрию.

И вот настало долгожданное время турнира, на котором было 2 Угла. В момент полного разгара сражений появилась Биссектриса и решила принять участие. Но тут в бой с Биссектрисой вступил вначале старший Угол, затем подтянулся и младший, и победа все равно оказалась на стороне Биссектрисы.

Треугольник – многоугольник с тремя сторонами, или замкнутая ломаная линия с тремя звеньями, или фигура, образованная тремя отрезками, соединяющими три точки, не лежащие на одной прямой (см. рис. 1).

Основные элементы треугольника abc

Вершины – точки A, B, и C;

Стороны – отрезки a = BC, b = AC и c = AB, соединяющие вершины;

Углы – α , β, γ образованные тремя парами сторон. Углы часто обозначают так же, как и вершины, – буквами A, B и C.

Угол, образованный сторонами треугольника и лежащий в его внутренней области, называется внутренним углом, а смежный к нему является смежным углом треугольника (2, стр. 534).

Высоты, медианы, биссектрисы и средние линии треугольника

Кроме основных элементов в треугольнике рассматривают и другие отрезки, обладающие интересными свойствами: высоты, медианы, биссектрисы исредние линии.

Высота

Высоты треугольника – это перпендикуляры, опущенные из вершин треугольника на противоположные стороны.

Для построения высоты необходимо выполнить следующие действия:

1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);

2) из вершины, лежащей напротив проведенной прямой, провести отрезок из точки к этой прямой, составляющий с ней угол 90 градусов.

Точка пересечения высоты со стороной треугольника называется основанием высоты (см. рис. 2).

Свойства высот треугольника

    В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному треугольнику.

    В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

    Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон.

    Три высоты в остроугольном треугольнике пересекаются в одной точке и эту точку называют ортоцентром треугольника.

Медиана

Медианы (от лат. mediana– «средняя») – это отрезки, соединяющие вершины треугольника с серединами противолежащих сторон (см. рис. 3).

Для построения медианы необходимо выполнить следующие действия:

1) найти середину стороны;

2)соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком.

Свойства медиан треугольника

    Медиана разбивает треугольник на два треугольника одинаковой площади.

    Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса

Биссектрисами (от лат. bis – дважды» и seko – рассекаю) называют заключенные внутри треугольника отрезки прямых, которые делят пополам его углы (см. рис. 4).

Для построения биссектрисы необходимо выполнить следующие действия:

1) построить луч, выходящий из вершины угла и делящий его на две равные части (биссектрису угла);

2) найти точку пересечения биссектрисы угла треугольника с противоположной стороной;

3) выделить отрезок, соединяющий вершину треугольника с точкой пересечения на противоположной стороне.

Свойства биссектрис треугольника

    Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.

    Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.

    Биссектрисы внутреннего и внешнего углов перпендикулярны.

    Если биссектриса внешнего угла треугольника пересекает продолжение противолежащей стороны, то ADBD=ACBC.

    Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка - центр одной из трех вневписанных окружностей этого треугольника.

    Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.

    Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.

Средний уровень

Биссектриса треугольника. Подробная теория с примерами (2019)

Биссектриса треугольника и ее свойства

Знаешь ли ты, что такое середина отрезка? Конечно же знаешь. А центр круга? Тоже. А что такое середина угла? Ты можешь сказать, что такого не бывает. Но почему же, отрезок можно разделить пополам, а угол нельзя? Вполне можно - только не точкой, а…. линией.

Помнишь шутку: биссектриса это крыса, которая бегает по углам и делит угол пополам. Так вот, настоящее определение биссектрисы очень похоже на эту шутку:

Биссектриса треугольника - это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Когда-то древние астрономы и математики открыли очень много интересных свойств биссектрисы. Эти знания сильно упростили жизнь людей. Стало легче строить, считать расстояния, даже корректировать стрельбу из пушек… Нам же знание этих свойств поможет решить некоторые задания ГИА и ЕГЭ!

Первое знание, которое поможет в этом - биссектриса равнобедренного треугольника.

Кстати, а помнишь ли ты все эти термины? Помнишь чем они отличаются друг от друга? Нет? Не страшно. Сейчас разберемся.

Итак, основание равнобедренного треугольника - это та сторона, которая не равна никакой другой. Посмотри на рисунок, как ты думаешь, какая это сторона? Правильно - это сторона.

Медиана - это линия, проведенная из вершины треугольника и делящая противоположную сторону (это снова) пополам.

Заметь, мы не говорим: «Медиана равнобедренного треугольника». А знаешь почему? Потому что медиана, проведенная из вершины треугольника, делит противоположную сторону пополам в ЛЮБОМ треугольнике.

Ну, а высота - это линия, проведенная из вершины и перпендикулярная основанию. Ты заметил? Мы опять говорим о любом треугольнике, а не только о равнобедренном. Высота в ЛЮБОМ треугольнике всегда перпендикулярна основанию.

Итак, разобрались? Ну почти. Чтобы еще лучше понять и навсегда запомнить что такое биссектриса, медиана и высота, их нужно сравнить друг с другом и понять в чем они похожи и чем они отличаются друг от друга. При этом, чтобы лучше запомнить, лучше описать все «человеческим языком». Потом ты легко будешь оперировать языком математики, но сначала ты этот язык не понимаешь и тебе нужно осмыслить все на своем языке.

Итак, в чем они похожи ? Биссектриса, медиана и высота - все они «выходят» из вершины треугольника и упираются в противоположную сторону и «что-то делают» либо с углом из которого выходят, либо с противоположной стороной. По-моему просто, нет?

А чем они отличаются ?

  • Биссектриса делит угол, из которого выходит, пополам.
  • Медиана делит противоположную сторону пополам.
  • Высота всегда перпендикулярна противоположной стороне.

Теперь все. Понять - легко. А раз понял, можешь запомнить.

Теперь следующий вопрос. Почему же в случае с равнобедренным треугольником биссектриса оказывается одновременно и медианой и высотой?

Можно просто посмотреть на рисунок и убедиться, что медиана разбивает на два абсолютно равных треугольника. Вот и все! Но математики не любят верить своим глазам. Им нужно все доказывать. Страшное слово? Ничего подобного - все просто! Смотри: у и равны стороны и, сторона у них вообще общая и. (- биссектриса!) И вот, получилось, что два треугольника имеют по две равные стороны и угол между ними. Вспоминаем первый признак равенства треугольников (не помнишь, загляни в тему ) и заключаем, что, а значит = и.

Это уже хорошо - значит, оказалась медианой.

А вот что такое?

Посмотрим на картинку - . А у нас получилось, что. Значит, и тоже! Наконец, ура! и.

Показалось ли тебе это доказательство тяжеловатым? Посмотри на картинку - два одинаковых треугольника говорят сами за себя.

В любом случае твердо запомни:

Теперь сложнее: мы посчитаем угол между биссектрисами в любом треугольнике! Не бойся, все не так уж хитро. Смотри на рисунок:

Давай его посчитаем. Ты помнишь, что сумма углов треугольника равна ?

Применим этот потрясающий факт.

С одной стороны, из:

То есть.

Теперь посмотрим на:

Но биссектрисы, биссектрисы же!

Вспомним про:

Теперь через буквы

\angle AOC=90{}^\circ +\frac{\angle B}{2}

Не удивительно ли? Получилось, что угол между биссектрисами двух углов зависит только от третьего угла !

Ну вот, две биссектрисы мы посмотрели. А что, если их три??!! Пересекутся ли они все в одной точке?

Или будет так?

Как ты думаешь? Вот математики думали-думали и доказали:

Правда, здорово?

Хочешь знать, почему же так получается?

Итак…два прямоугольных треугольника: и. У них:

  • Общая гипотенуза.
  • (потому что - биссектриса!)

Значит, - по углу и гипотенузе. Поэтому и соответствующие катеты у этих треугольников - равны! То есть.

Доказали, что точка одинаково (или равно) удалена от сторон угла. С пунктом 1 разобрались. Теперь перейдём к пункту 2.

Почему же верно 2?

И соединим точки и.

Значит, то есть лежит на биссектрисе!

Вот и всё!

Как же все это применить при решении задач? Вот например, в задачах часто бывает такая фраза: «Окружность касается сторон угла….». Ну, и найти нужно что-то.

То быстро соображаешь, что

И можно пользоваться равенством.

3. Три биссектрисы в треугольнике пересекаются в одной точке

Из свойства биссектрисы быть геометрическим местом точек, равноудаленных от сторон угла, вытекает следующее утверждение:

Как именно вытекает? А вот смотри: две-то биссектрисы точно пересекутся, правда?

А третья биссектриса могла бы пройти так:

Но на самом деле-то всё гораздо лучше!

Давай рассмотрим точку пересечения двух биссектрис. Назовём её .

Что мы тут оба раза применяли? Да пункт 1 , конечно же! Если точка лежит на биссектрисе, то она одинаково удалена от сторон угла.

Вот и получилось и.

Но посмотри внимательно на эти два равенства! Ведь из них следует, что и, значит, .

А вот теперь в дело пойдёт пункт 2 : если расстояния до сторон угла равны, то точка лежит на биссектрисе…какого же угла? Ещё раз смотри на картинку:

и - расстояния до сторон угла, и они равны, значит, точка лежит на биссектрисе угла. Третья биссектриса прошла через ту же точку! Все три биссектрисы пересеклись в одной точке! И, как дополнительный подарок -

Радиусы вписанной окружности.

(Для верности посмотри ещё тему ).

Ну вот, теперь ты никогда не забудешь:

Точка пересечения биссектрис треугольника - центр вписанной в неё окружности.

Переходим к следующему свойству… Ух и много же свойств у биссектрисы, правда? И это здорово, потому что, чем больше свойств, тем больше инструментов для решения задач про биссектрису.

4. Биссектриса и параллельность, биссектрисы смежных углов

Тот факт, что биссектриса делит угол пополам, в каких-то случаях приводит к совершенно неожиданным результатам. Вот, например,

Случай 1

Здорово, правда? Давай поймём, почему так.

С одной стороны, - мы же проводим биссектрису!

Но, с другой стороны, - как накрест лежащие углы (вспоминаем тему ).

И теперь выходит, что; выкидываем середину: ! - равнобедренный!

Случай 2

Представь треугольник (или посмотри на картинку)

Давай продолжим сторону за точку. Теперь получилось два угла:

  • - внутренний угол
  • - внешний угол - он же снаружи, верно?

Так вот, а теперь кому-то захотелось провести не одну, а сразу две биссектрисы: и для, и для. Что же получится?

А получится прямоугольный!

Удивительно, но это именно так.

Разбираемся.

Как ты думаешь, чему равна сумма?

Конечно же, - ведь они все вместе составляют такой угол, что получается прямая.

А теперь вспомним, что и -биссектрисы и увидим, что внутри угла находится ровно половина от суммы всех четырех углов: и - - то есть ровно. Можно написать и уравнением:

Итак, невероятно, но факт:

Угол между биссектрисами внутреннего и внешнего угла треугольника равен.

Случай 3

Видишь, что здесь все так же, как и для внутреннего и внешнего углов?

Или ещё раз подумаем, почему так получается?

Снова, как и для смежных углов,

(как соответственные при параллельных основаниях).

И опять, составляют ровно половину от суммы

Вывод: Если в задаче встретились биссектрисы смежных углов или биссектрисы соответственных углов параллелограмма или трапеции, то в этой задаче непременно участвует прямоугольный треугольник, а может даже и целый прямоугольник.

5. Биссектриса и противоположная сторона

Оказывается, биссектриса угла треугольника делит противоположную сторону не как-нибудь, а специальным и очень интересным образом:

То есть:

Удивительный факт, не правда ли?

Сейчас мы этот факт докажем, но приготовься: будет немного сложнее, чем раньше.

Снова - выход в «космос» - дополнительное построение!

Проведём прямую.

Зачем? Сейчас увидим.

Продолжим биссектрису до пересечения с прямой.

Знакомая картинка? Да-да-да, точно так же, как в пункте 4, случай 1 - получается, что (- биссектриса)

Как накрест лежащие

Значит, - это тоже.

А теперь посмотрим на треугольники и.

Что про них можно сказать?

Они…подобны. Ну да, у них и углы равны как вертикальные. Значит, по двум углам.

Теперь имеем право писать отношения соответствующих сторон.

А теперь в коротких обозначениях:

Ой! Что-то напоминает, верно? Не это ли самое мы хотели доказать? Да-да, именно это!

Видишь, как здорово проявил себя «выход в космос» - построение дополнительной прямой - без неё ничего бы не вышло! А так, мы доказали, что

Теперь можешь смело использовать! Разберём ещё одно свойство биссектрис углов треугольника - не пугайся, теперь самое сложное кончилось - будет проще.

Получаем, что

Теорема 1:

Теорема 2:

Теорема 3:

Теорема 4:

Теорема 5:

Теорема 6:

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png