Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат

Хиндикайнен Е.С. Проектирование воздушно-динамического рулевого привода управляемой гиперзвуковой ракеты зенитного комплекса: Дипломный проект / ТГУ - Тула, 2006.

ВОЗДУШНО-ДИНАМИЧЕСКИЙ РУЛЕВОЙ ПРИВОД, ГАЗОРАСПРЕ-ДЕЛИТЕЛЬНОЕ УСТРОЙСТВО, РАБОЧАЯ ПОЛОСТЬ, СОПЛО, ПРИЕМНИК, ШПАНГОУТ, АЭРОДИНАМИЧЕСКИЕ РУЛИ, ЭЛЕКТРОМАГНИТ.

Целью дипломного проекта является разработка воздушно-динамического рулевого привода.

В ходе выполнения проекта необходимо обосновать выбор типа и структуры привода, составить математическую модель привода, рассчитать конструктивные параметры, произвести тепловой расчет конструкции, рассчитать управляющий электромагнит и динамические характеристики привода.

В технологической части составлены маршрутные карты и технологический процесс сборки рулевой машины.

В экономической части составить сетевой график процесса проектирования рулевого привода.

В проекте рассмотрены вопросы охраны труда, меры по недопущению вредных и опасных факторов, электробезопасность, пожарная безопасность.

Введение

1. Основная часть

1.1 Обоснование выбора типа привода и его структуры

1.2 Принцип действия РП

1.3 Математическое описание функционирования ВДРП

1.4 Расчет первоначального варианта РП

1.5 Расчет обобщенных и конструктивных параметров

1.6 Описание конструкции РП

1.7 Тепловой расчет конструкции

1.8 Математическая модель РП

1.9 Расчет автоколебательной системы ВДРП и ее динамических характеристик

1.10 Расчет управляющего электромагнита

2. Технологическая часть

2.1 Разработка приспособления

2.2 Порядок работы с приспособлением

3. Экономическая часть

3.1 Составление и расчет сетевого графика

4. Охрана труда

4.1 Анализ вредных и опасных факторов при проектировании РП

4.2 Меры по недопущению вредных и опасных факторов

4.2.1 Расчет освещенности

4.2.2 Электробезопасность

4.2.3 Пожарная безопасность

Заключение

Список использованной литературы

Введение

Любой товаропроизводитель при создании нового вида продукции преследует определенные цели; удовлетворение спроса на рынке, получение определенного объема прибыли посредством продажи данного продукта.

Чтобы достигнуть этих целей в нынешних условиях существования наших предприятий необходимо добиваться улучшения ряда показателей: повышение качества выпускаемой продукции, снижение себестоимости изготовления изделия, повышение числа дополнительных возможностей изделия, потребительских новшеств, что делает изделие более привлекательным по сравнению с аналогичными конкурирующими изделиями, и другие показатели, позволяющие привлечь потенциальных покупателей и устоять в усиливающей конкурентной борьбе товаропроизводителей.

Принципиально к военной технике, в данном случае, летательным аппаратам, предприятие - изготовитель должно работать над следующими показателями, характеризующие изделие: снижение стоимости, уменьшение общей массы летательного аппарата за счет введения в конструкцию изделия технических нововведений, постоянное повышение качества изготовления, простота эксплуатации и обслуживания.

Производя продукцию с учетом этих показателей оборонное предприятие сможет производить конкурентоспособную продукцию и удовлетворять запросы любых заказчиков.

Управление летательным аппаратом (ЛА) является важнейшей научной и практической проблемой современного самолето и ракетостроения.

Для обеспечения полета ЛА по требуемой траектории применяется совокупность различных технических средств, представляющая собой систему управления.

По функциональному назначению входящие в систему управления ЛА устройства можно разбить на три группы:

1) устройства формирования управляющего воздействия с сигнала управления;

2) органы управления, которые создают управляющие усилия;

3) рулевые приводы, приводящие органы управления в действие в соответствии с управляющим воздействием.

Так как данный дипломный проект посвящен разработке рулевого при вода, рассмотрим более подробно 3-тью группу устройств.

Рулевые приводы осуществляют в системе управления функциональную взаимосвязь между устройствами первой и второй групп. Поэтому наряду с функциональными элементами, обеспечивающими создание силового воздействия на органы управления (источники питания, кинематически связанные с органами управления исполнительные двигатели, элементы энергетических магистралей), рулевые приводы включают функциональные элементы, которые устанавливают соответствие этого силового сигнала формируемому в системе управления управляющему сигналу (преобразователи и усилители электрических сигналов, электромеханические преобразователи, различного вида датчики).

Для конкретизации областей исследования задач, стоящих при разработке рулевых приводов, в их составе выделяют силовую и управляющую системы. Силовая система объединяет функциональные элементы рулевого привода, которые непосредственно участвуют в преобразовании энергии источника питания в механическую работу, связанную с перемещением позиционно нагруженных органов управления.

Управляющую систему составляют функциональные элементы рулевого привода, которые обеспечивают изменение регулируемой величины (координаты положения органов управления) по заданному или выработанному в процессе полета ЛА закону управления.

Структура, характеристики и конструкция рулевого привода определяются типом летательного аппарата. В данном дипломном проекте рассматривается рулевой привод для малогабаритных ЛА, полет которых происходит в плотных слоях атмосферы. Такие рулевые приводы осуществляют перемещение, как правило, поворотных аэродинамических рулей ЛА и характеризуются высоким быстродействием, способностью развивать значительные усилия при низкой массе и малых габаритах конструкции. Их энергетические и габаритно-массовые характеристики существенно зависят от вида используемой энергии.

Бурное развитие ЛА в пятидесятых годах заставило применять пневмопривод с воздушным аккумулятором давления в системах управления ЛА из-за того, что он был наиболее дешевым, простым и надежным рулевым механизмом.

В шестидесятых годах получили распространение рулевой привод на горячем газе, широко применяемый и в настоящее время. Переход от воздушного аккумулятора давления в системах рулевых приводов, "занимающего значительный объем в ЛА, к малогабаритному и простому в изготовлении пороховому генератору газа позволил улучшить габаритно-массовые и эксплутационные характеристики рулевых приводов.

Создание в семидесятых годах рулевого привода без бортового источника питания - воздушно-динамического - положило начало новому этапу совершенствования рулевых приводов малогабаритных ЛА;

Следует также упомянуть о существовании электромагнитных рулевых приводов, в которых управления лопастями происходит напрямую силовым электромагнитом, напитываемым от аккумуляторной батареи. Однако они так же не получили широкого применения вследствие малой мощности и большого веса источника питания электромагнита.

1. Основная часть

1.1 Обоснование выбо ра типа привода и его структуры

Классификация приводов.

Приводы лопастей предназначены для преобразования электрических сигналов управления в механическое перемещение лопастей, жестко связанных с подвижными частями исполнительного двигателя.

Исполнительный двигатель преодолевает при этом действующие на лопасть шарнирные нагрузки, обеспечивая необходимую скорость и необходимое ускорение при обработке заданных выходных сигналов с требуемой динамической точностью.

На базе уже существующих конструкций приводы могут быть классифицированы:

1) по типу силовой системы:

Воздушно - динамические;

Пневматические;

Горячегазовые;

Электромагнитные;

2) по принципу управления лопастями:

Релейное двух и трехпозиционное управление;

Пропорциональное управление;

3) по схеме управляющей системы:

Автоколебательная с двух и трехпозиционным управлением;

Самонастраивающаяся с генератором вынуждающих колебаний и с двух и трехпозиционным управлением;

Автоколебательная с генератором вынуждающих колебаний и с двух и трехпозиционным управлением;

4) по типу исполнительного двигателя:

Одностороннего и двух стороннего действия;

Полуоткрытого и закрытого типа;

5) по типу распределительного устройства:

Поворотный золотник на входе, на выходе, на входе и выходе одновременно;

Струйная трубка;

Клапанное распределительное устройство на входе, выходе, входе и выходе одновременно.

Выбор типа РП.

Создавая новую конструкцию РП с учетом требований, изложенных в введении, необходимо выбирать такой тип привода, который обеспечивал бы требования по точности при меньшей массе и расходовал бы меньшее количество энергии по сравнению с другими типами приводов.

Для малогабаритных ракет наиболее перспективными являются рулевые привода, которые используют скоростной напор набегающего потока воздуха, получившие название -- воздушно-динамические рулевые привода.

Привода такого типа не требуют размещения на борту летательного аппарата специального источника энергии для осуществления поворота рулевых лопастей. В таком приводе поворот рулей осуществляется за счет набегающего потока воздуха. Отсутствие источника энергии улучшает массо-габаритные характеристики. Такие привода обладают следующими преимуществами перед другими приводами: простотой конструкции и обслуживания, малой металлоемкостью, небольшой трудоемкостью изготовления, надежностью работы, сравнительно невысокой стоимостью.

Воздушно-динамические рулевые привода развивают достаточную мощность и обеспечивают необходимое быстродействие, при этом аэродинамическое сопротивление, создаваемое воздухозаборником, пренебрежимо мало.

Системы приводов, использующие аэродинамический напор воздуха, обладают следующими свойствами:

Независимость габаритов силовой системы от времени работы,

Соответствие располагаемых и требуемых характеристик в широком диапазоне скоростей, постоянство фазового сдвига в широком диапазоне частот вращения.

1. В состав РП входят:

1) две рулевые машины (РМ);

2) шпангоут с аэродинамическими рулями;

3) воздухозаборное устройство;

4) блок усилителей,

5) теплоотборник

2. Основные технические требования к РП следующие:

1) РП двухканальный, воздушно-динамический. Зависимость отклонения рулей от входного сигнала пропорциональная;

2) максимальный угол отклонения рулей б m = ±25 o ±l °;

3) форма и геометрические размеры руля представлены на рис. 1.1

Рис. 1.1. Геометрическая форма и размеры руля.

4) динамические характеристики РП обеспечиваются в диапазонах:

чисел Маха (М)........................................ от 1,1 до 5,5

частот вращения по крену (Гц)....................от 3,0 до 21,0

температур воздуха на входе (Т а), К........ от 223 до 2140

шарнирных нагрузок (М ш) НМм................... от минус 0,1 до минус 6,35;

избыточных давлений (P и), Па от 1,2-10 до 38,0-10

5) РП обеспечивает заданные динамические характеристики с момента начала управления (t y) при М > 1,1:

ty= 0,59 с при Та =-50°С;

t y = 0,50 c при Та = 20°С;

t y = 0,37 c при Та = 50°С;

6) фазовые сдвиги РП при синусоидальном входном сигнале в диапазоне частот вращения f min -f max и амплитудах входного сигнала 0-25° от минус 5 до минус 25°;

7) нормированный коэффициент передачи в линейной зоне по первой гармонике при синусоидальном входном сигнале в условиях работы ракеты и с учетом погрешности изготовления при номинальном напряжении питания

8) номинальное значение коэффициента передачи, относительно ко-торого нормируется коэффициент передачи РП,

k н ом = 5,8°/В. Коэффициент передачи изменяется обратно пропорцио-нально питающему напряжению.

9) ненули на выходе РП (Дд) с момента начала управления (М? 1,1) не более 2,5°, до начала управления Дд? = ± 25°;

10) РП должен быть стойким, прочным и устойчивым на всех этапах эксплуатации к воздействию внешних факторов в соответствии с требованиями ТЗ и требованиями ГОСТ В20.39.302-76, ГОСТ В20.39.303_76, ГОСТ В20.39.304-76, ГОСТ В20.39.308-76, предъявляемыми к изделиям классификационной группы 4.3 с учетом требований групп 1.7 и 1.13;

11) время боевой работы РП на траектории не менее 18,8 с. Ресурс работы РП не менее 2 ч, в том числе с подачей пневмопитания -1ч.

Успех проектирования зависит не только от типа привода, но и от его структуры. При выборе структуры привода необходимо принимать во внимание требования, предъявляемые к приводу: ограничения по динамическим характеристикам, массо-габаритные характеристики, величина потребляемого тока от источника энергии. В системах приводов применяются структуры систем непрерывного и релейного действия. Системы приводов непрерывного действия более трудоемки в сравнении с системами релейного действия, так как их элементы должны иметь линейные статические характеристики. В системах приводов релейного действия используются более простые элементы: усилитель мощности, электромагнит, распределитель функционируют в двухпозиционном режиме. Автоколебания системы приводов не требуют обеспечения устойчивости. Наиболее просты разомкнутые системы приводов, но по сравнению с системами приводов с обратной связью требуемые динамические характеристики в них обеспечиваются за счет повышения мощности привода. Привод с большой мощностью требует большого расхода энергии: электромеханический преобразователь должен иметь большой электромагнитный момент, что обуславливает увеличение его объема и массы; от усилителя мощности требуется большая мощность для управления. Все это приводит к существенному увеличения объема и массы системы привода. В замкнутой системе привода вводятся датчик обратной связи, измеритель ошибки. Обычно они занимают малые объемы, имеют малые массы. Автоколебательные системы имеют лучшие динамические характеристики.

Поэтому, приходим к выводу, что при заданных нагрузках и требуемых динамических характеристиках целесообразно, для обеспечения минимальных габаритов и массы летательного аппарата, применение замкнутого автоколебательного рулевого привода, использующего в качестве рабочего тела скоростной напор встречного потока воздуха.

Перспективность проектирования рулевого привода релейного действия обусловлена следующими преимуществами: в замкнутом контуре обеспечиваются высокочастотные автоколебания малой амплитуды, благодаря которым линеаризуются нелинейности в механической передаче (люфт, трение покоя), в электромагните (зона нечувствительности) и практически исключается их влияние на преобразование управляющих сигналов; достигается высокая динамическая точность; система состоит из меньшего числа элементов по сравнению с системами непрерывного действия; система релейного действия проста в изготовлении, так как не требует регулировки; требует минимального объема проверок.

1.2 Принцип действия РП

При полете управляемой ракеты набегающий поток воздуха через носовой воздухозаборник, теплообменник и распределительное устройство проходит в рабочие полости РМ. С блока усилителей сигнал ошибки, равный разности сигналов управления и датчика обратной связи, подается поочередно на одну или другую обмотки управляющего электромагнита. При поступлении сигнала в одну из обмоток якорь притягивается к ней и устанавливает струйную трубку напротив соответствующего окна приемника. Воздух поступает в рабочую полость, и в ней устанавливается максимальное давление, одновременно вторая полость оcвобождается. Под действием разницы рабочих давлений в рабочих полостях рули смещаются пропорционально входному сигналу, совершая при этом высокочастотные автоколебания. При отсутствии - входного сигнала автоколебания совершаются относительно нулевого положения рулей.

1.3 Математическое описание функционирования воздушно-динамического привода

Состояние физического тела -- однородного газа -- в некотором проточном объёме W i в каждый момент времени характеризуется совокупностью следующих параметров:

Давления P i

Удельного веса г i

Температуры T i .

Для этого газа, полагая его идеальным, справедливо уравнение состояния:

(1.3.1)

Из этого уравнения следует, что независимых величин, характеризующих состояние газа в проточной полости, две. В термодинамике для их определения используются два закона:

Закон сохранения энергии;

Закон сохранения массы.

Принимаем допущения о том, что параметры газа являются медленно меняющимися по сравнению с изменением сигналов управления.

Это позволяет разбить уравнение нелинейной нестационарной модели привода на две группы уравнений:

Уравнения с медленно меняющимися координатами;

Уравнения с быстро меняющимися координатами.

Учитывая выше изложенное, применим для описания функционирования привода законы сохранения энергии.

Расчетная схема канала РП представлена на рисунке 1.3.1

Рис 1.3.1 Расчетная схема рулевого привода

Закон сохранения энергии можно записать в следующем виде:

Для полости теплоотборника

Для рабочей полости

Для полости отсека

Закон сохранения массы:

Для полости теплоотборника

Для рабочей полости

- для полости отсека

Удельный приход (расход) энергии находим по зависимостям:

Массовый секундный приход (расход) газа в рабочей полости определяется по формулам:

Функции режима течения определяются по формулам:

Математическое описание двигателя включает а себя еще и уравнения, полученные из уравнения состояния. Они имеют вид:

Для полости теплоотборника

Для рабочей полости

Для полости отсека

С учетом теплообмена будем иметь следующие зависимости:

Для стенок теплоотборника

Для стенок рабочей полости

Для стенок отсека

Механическая подсистема описывается следующими уравнениями:

Эффективные сечения входного и выходного отверстий распределительного устройства типа «струйная трубка» с достаточной для инженерной практики точностью можно описать с помощью полинома первой степени.

Для входного сечения:

Для выходного сечения:

Используя выражение для параметров можно записать:

где и - соответственно, фактический и максимальный углы поворота распределителя.

Полное нелинейное математическое описание (МО) исполнительного механизма имеет вид:

Математическое описание исполнительного механизма будет иметь следующий вид:

(1.3.21)

где Т г =

где Т ум - постоянная времени управляющего электромагнита;

ж - коэффициент колебательности;

k ум - коэффициент аппроксимации;

U bx - напряжение входного сигнала;

P Пi - давление в полостях привода;

k - показатель адиабаты;

П то - удельный расход энергии в теплоотборнике;

G to - удельный массовый секундный расход рабочего тела в теплоотборнике;

П П1,2 - удельный расход энергии в рабочих полостях;

G П1,2 - удельный массовый секундный расход рабочего тела в полостях;

S П - площадь поршня;

д, д m - угол поворота и максимальный угол поворота рулей;

W 1,2 - объем рабочих полостей;

Т П1,2 - температура рабочего тела в полостях;

г П1,2 - удельный вес рабочего тела в полостях;

R - универсальная газовая постоянная;

I ? - приведенный суммарный момент инерции подвижных частей;

f - коэффициент вязкого трения;

m ш (д) - жесткость шарнирной нагрузки;

М стр - момент сухого трения;

k о - газодинамический коэффициент;

P ТО - давление в ресивере;

Y П1,2 , Y ТО1,2 - газодинамические функции режима течения;

µS b x 1,2 , µS bыx1,2 - эффективные площади втекания и истечения в рабочих полостях;

P о - давление в отсеке;

с - коэффициент, характеризующий регулируемое втекание;

б, б m - угол поворота и максимальный угол поворота якоря управляющего электромагнита;

б, б у - коэффициенты, характеризующие регулируемое истечение.

Структурная схема исполнительного механизма будет иметь следующий вид:

Рис 1.3.2 Структурная схема исполнительного механизма.

1.4 Расче т первоначального варианта ВДРП

Проанализируем диапазон чисел Маха на участке управляемого полета:

В таблице 1.1 отражена зависимость коэффициента от чисел Маха:

Таблица 1.1

Значения коэффициента подъемной силы c n = f (M, б э ф) и относительного положения центра давления x d = f (б э ф, М) приведены, соответственно, в таблицах 1.2 и 1.3

Таблица 1.2 коэффициент с п

центр давления

Выбираем положение оси вращения руля:

Х ов = (0,05 ? 0,1) - (X dmax - X dmin) + X dmin

Значение х ов = 52 мм

Рассчитаем значения шарнирных нагрузок по зависимости:

q = 0,725 М 2 ;

в р - аэродинамическая хорда; в р = 86 мм;

S xap - площадь сечения ракеты; S xap = 28,27 см 2 ;

с п - коэффициент подъемной силы;

x d - относительное положение центра давления;

Значения шарнирных нагрузок приведены в таблице 1.4

Таблица 1.4

значения шарнирных нагрузокМ н [кгсм]

Зависимость шарнирных нагрузок от чисел Маха и от эффективных углов приведены на рисунке 1.4.1.

Рассчитаем значения избыточных давлений при соответствующих числах Маха по зависимости:

при, Р ст = 1 ат;

при, Р ст = f(H,T);

Определим изменения параметра характеризующего соотношение момента нагрузки и развиваемого приводом момента:

Избыточное давление,

с п - коэффициент подъемной силы,

х ов - положение оси вращения руля,

х d - относительное положение центра давления,

М - число Маха.

Рассчитаем значение энергетической функции, которая характеризует отношение мощности потребной и мощности развиваемой:

где N потр =,

Потребная скорость;

Потребный момент;

Максимальный момент;

- максимальная скорость;

где f в p - частота вращения, Гц

М н - момент нагрузки,

Y n - газодинамическая функция расхода,

Т - температура газа в рабочей полости.

Все данные, рассчитанные по выше изложенным зависимостям, представлены в таблицах 1.5-1.8.

Таблица 1.5 ,Т = -50°С

Таблица 1.6 ,Т = +50°С

Р изб,атм

Таблица 1.7 ,Т = -50°С

Р изб, атм

Таблица 1.8 ,Т = +50°С

М н, Кг/см

Р изб, атм

Из полученных расчетных данных определим режимы полета, на которых будем в дальнейшем производить расчеты конструктивных и обобщенных параметров, проводить тепловой расчет.

Конструктивный расчет S n l будем определять на режиме, где параметр k у, характеризующий соотношения момента нагрузки и развиваемого момента имеет экстремум.

k у = 0,0098 при, T = -5O°C, t = O,6 c.

Расчет потребной скорости будем проводить на режиме, где энергетическая функция с э имеет экстремум, или, другими словами, где потребная мощность максимально приближена к развиваемой мощности привода.

с э = 11,57 при 0 = 70°, Т =-50° С, t = 5,8 с.

Тепловой расчет будем проводить на режиме, где достигается максимальная скорость полета: ,Т = +50°С.

1.5 Расчет обобщенных и конструктивных пара метров

Расчет конструктивного параметра S n l.

Расчет конструктивного параметра будем проводить, исходя из обеспечения допустимого значения по зависимости:

(1.5.1)

S n - площадь поршня,

- максимальный относительный перепад давлений,

где Р n 1,2 - давление в рабочих полостях.

Для распределительного устройства типа "струйная трубка" можно принять k у находится как экстремум функции k у = 0,0098.

о- коэффициент, учитывающий утечки в полостях и потери в системе о=0,9

Принимаем S n l = 9-10 -6 м 3 = 9 см 3 .

Расчет развиваемого момента.

Расчет развиваемого момента будем проводить, исходя из следующего соотношения:

Р ИЗб выбирается для экстремума с энерг

с энерг = -11,57, Ризб =12,41 атм.

Тогда М т = 9 * 0,75 * 12,41 = 83,8 кг/см.

Зная момент нагрузки М т = 25,02 кг- см, можно определить значение параметра у:

Отсюда видно, что у < у доп при у доп = 0,4.

Расчет потребной и максимальной скорости.

Расчет потребной скорости будем проводить, исходя из отработки угла д 0 на частоте f при действии нагрузки, по зависимости

где д 0 = д m - угол отклонения рулей, д 0 = 0,44 рад.

Параметр для газораспределительного устройства типа "струйная трубка" можно принять 1;

щ = 2*f = 2* f вр 1,5 + 2*1,5 + 2*1,5 - круговая частота вращения объекта рассчитывается с учетом разброса на конструктивные параметры и частоты управления.

щ =2* 12,96*2* 1,5* 2* 1,5 = 100 с -1 ,

59,5 рад/с.

Максимальная скорость находится из следующего соотношения:

где - коэффициент, учитывающий разброс конструктивных параметров, = 1,15;

k тр = 0,9 - коэффициент, учитывающий трение,

Расчет эффективной площади выходного отверстия ГРУ.

Эффективная площадь выходного отверстия газораспределительного устройства может быть определена из зависимости для определения максимальной скорости:

где Т п - температура рабочего тела в полости, Т п = 900 К,

Y - газодинамическая функция расхода, Y = 1 при Р изб = 12,41 атм.

R, k о - параметры, характеризующие рабочее тело,

k о - показатель адиабаты, k о = 21,4,

R - универсальная газовая постоянная R = 2927 кг. см / кг-К

Эффективная площадь выходного отверстия ГРУ будет равна:

Эффективная площадь входного отверстия ГРУ будет равна:

Коэффициент расхода, - коэффициент расхода, = 0,85?0,9.

Выходные и входные площади отверстий ГРУ будут равны, соответственно:

S вых = 0,024 см 2 ; S BX = 0,021 см 2 .

1.6 Описание конструкции РП

В состав двухканального РП входят две рулевые машины, обеспечи-вающие управление каждым каналом, шпангоут с двумя парами аэродинамических рулей, воздухозаборник, теплоотборник, блок усилителей, конструктивно располагающийся в электронной аппаратуре ракеты.

Разработанный привод представляет собой пропорциональный рулевой привод, использующий энергию набегающего потока воздуха с исполнительным релейным двигателем двухстороннего действия и распределительным устройством "струйная трубка".

Поршень исполнительного двигателя имеет уплотнения, обеспечивающие плотное прилегание поршня к стенкам цилиндра, что обеспечивает отсутствие перетекания между полостями. Уплотнение поршня комбинированное состоит из фторопластовых колец, подпружиненных изнутри воротничковыми манжетами.

Основными сборочными единицами РП являются шпангоут и рулевые машины.

В шпангоуте на подшипниках качения установлены аэродинамические рули. На шпангоут с помощью винтов крепятся с двух сторон рулевые машины. Поступательное движение штока рулевой машины преобразуется во вращательное движение рулей посредством промежуточной тяги.

В состав рулевой машины входит силовой цилиндр двухстороннего действия, поршень с уплотнениями, потенциометрический датчик обратной связи, распределительное устройство. Распределительное устройство состоит из поворотного сопла, закрепленного на оси управляющего электромагнита и неподвижного приемника, который имеет два прямоугольных окна, связанные через подводные каналы с полостями рабочего цилиндра.

При торможении воздушного потока от элемента конструкции привода выделяется большое количество тепла, в результате чего конструкция нагревается. Поэтому необходимо использовать материалы для изготовления, способные выдерживать высокую температуру. Носовой обтекатель будет изготавливаться из цинко-молибденового сплава ЦМ-2А, аэродинамические рули из хромо-никелевого сплава ЖСБК~Ви. Остальные детали конструкции, менее подверженные тепловому воздействию будут изготавливаться из нержавеющей стали. Для охлаждения воздуха, попадающего через воздухозаборник в рабочие полости, в передней части РП установлен теплоотборник, состоящий из тонких металлических трубок, проходя через которые, воздух охлаждается.

1.7 Тепловой расчет

Тепловой расчет конструкции проводится после предварительной компоновки РП по алгоритму, приведенному на рис. 1.7 в следующем порядке:

1) определяется температура газа на входе в воздухозаборное устройство

Т вх =Т а (1+0,2М 2);

2) по первоначально выбранному q j , определяется температура рабочего тела в j-том элементе конструкции

3) определяются параметры,

4) рассчитывается критерий Био:

5) определяются коэффициенты уравнений для расчета температуры рабочего тела и стенок конструкции j-того элемента:

6) рассчитывается параметр

Если отличие заданного значения и рассчитанного составляет более 15%, то проводится повторный расчет, и в качестве берется рассчитанное значение.

Результаты расчета тепловых процессов используются для уточнения обобщенных параметров привода и выбора материалов конструкции.

Алгоритм расчета температур рабочего тела и стенок конструкции

Выбор режима расчета и первоначального значения q ч

Расчет температуры газа в трубопроводе

Расчет параметра k ат и коэффициентов теплоотдачи б п и б вт

Расчет температуры воздуха в трубопроводе и температуры стенки

Расчет параметра q з

Выбор первоначального значения q ф1

Расчет параметра k ап и коэффициентов б п и б вт

Определение коэффициентов уравнений для расчета температур

Расчет температуры воздуха в фильтре и температуры стенки фильтра

Расчет параметра q ф

Выбор первоначального значения q пi

Расчет параметра k ф1 и коэффициентов теплоотдачи б п и б вых

Расчет критерия ВИО для полости

Определение коэффициентов уравнений для расчета температур

Расчет температуры воздуха в полости и температуры стенки

Расчет параметра q п

Определение Т от (t), Т т (t), Т оф (t), Т ф (t), Т оп (t), Т п (t)

Выпуск отчетной документации

По приведенным выше математическим моделям рассчитаны параметры силовой и управляющей частей РП, управляющего электромагнита и температуры рабочего тела.

В качестве расчетных выбраны режимы (рис. 1.7, 1.8):

1) для расчета S n l - режим, соответствующий экстремуму k у:

Т а =223 К, t = 0,6 c, М=1,124, Р н =1,22М10 5 Па

k у min = - 0,0094, x ов = 61мм, М н = - 0,324 Нм, f в p = 3,6 Гц;

2) для расчета требуемой скорости и размеров распределительного устройства - режим, соответствующий экстремуму С э:

Т а =323 К, t = 4,8 c, М=5,014, Р н =18,2М10 5 Па, Х ов = 61 мм

М н = -3,68 Нм, f вp = 15,1 Гц. Н = 5200 м, Т вх = 1748 К, Дf вр = 3,0 Гц,

f y = 1,0 Гц, С min =-1,8;

3) для расчета управляющей части - режим, на котором имеют место максимальные фазовые сдвиги на рабочих частотах:

Т а = 323 К, t = 9,8 с, М = 5,23, Р и = 4,98М10 5 Па, Х ов = 61 мм, М н = = - 0,916 Нм, f в p = 14,06 Гц, Н = 14686 м, Т вх = 1475 К, Дf в p = 2,8 Гц, f y = 1,0 Гц;

4) для расчета тепловых процессов - режим, на котором имеют место максимальные температуры потока воздуха в воздухозаборнике:

Т а = 323 К, t = 1,38 с, М m ах = 5,308, Р а = 35,7·10 5 Па, Н = 0,

Т вх mах = 2132 К.

При b с = 9,7 10 -2 м, S p = 28,3М10 -4 м 2 , Дс m = 0,75, у доп = 0,4, о= 0,4, д m = =0,436 рад,

получены следующие основные конструктивные и обобщенные параметры исполнительного двигателя:

произведение площади поршня на плечо S n l, м 3 ...............9,0М10 - 6 ;

плечо 1, м..........................................................................1,05 10 - 2 ;

требуемая скорость Щ , 1/с...............................................76,03.

эффективная площадь истечения из рабочей полости

µS вых, м 2 ........................................................................... 2,00 10 -6 ;

эффективная площадь втекания в рабочую полость,

µS вх, m 2 ............................................................................. 1,8 10 -6 .

Зависимости параметра k у времени для различных режимов работы

Зависимость энергетической функции от времени для различных режимов работы

В конструкции реализовано S n l = 10,0-10 -6 м 3 .

В результате расчета управляющей части РП при = 6, = 88,3с - 1 ,

0,0393 рад, = -20°, = 76,4 с- 1 , М рп, = 3,36 Нм, J = 0,000025 кгм 2 , f = 0,001 Нмс, Мстр = 0,15

Нм определены параметры и структура привода:

частота автоколебаний, 1/с.................................... 530

амплитуда автоколебаний д а,рад................................ 0,277

время эквивалентного запаздывания УЭМ t э y M, с.......0,0016

величина зоны неоднозначности релейного усилителя, приведенная к

выходу ДОС U в........................................................ 1,0

параметр корректирующего фильтра С к.................... 1,76

амплитудная характеристика разомкнутого РП А р (). 2,505

фазовая характеристика замкнутого ) .........минус 20°

Для реализации С к = 1,76 использован корректирующий фильтр с передаточной функцией вида:

где: T i = 0,004 с, Т г = 0,012 с.

Основные параметры управляющего электромагнита, рассчитанные из условия обеспечения времени эквивалентного запаздывания t э = 0,0016 с при напряжении питания U n = 30 В, угле поворота = 0,0393 рад и максимальном допустимом токе потребления на канал J д? 0,8 А, следующие:

сопротивление обмотки при 20°С R о, Ом...................62±3;

число витков W, не менее....................................... 900;

провод ПЭТВ-0,112;

плечо якоря l я, м............................................... 1,15-10 - 2 ;

площадь якоря S a , м 2 ........................................... 0,2-10 -4 ;

площадь минимального сечения магнитопровода, м 2 .... 0,2-10 -4 ;

эквивалентная длина магнитопровода l ст, м............0,675-10";

жесткость пружины С пр, Нм/рад..............................1,7.

Время срабатывания рассчитанного УЭМ не более 0,002 с. Температура рабочего тела в трубопроводе Т Т, теплоотборнике Т ф, рабочих полостях Т п стенок Т ст, Т сф, Т сп для наиболее тяжелого с точки зрения нагрева режима превышают допустимых для легированных жаропрочных сталей, рис. 1.9. Расчет проведен при следующих исходных данных:

0,03-10 - 4 м 2 , F T = 14,1-10 -4 м 2 , t = 1,38 с, Т вх = 2132 К, Р вх = 36-10 5 Па, R = 29,27 Дж/(Н-К), k = 1,4, = 8,51Вт-м/(НМК),

0, J T = 0,015 кг, С т = 1087 Дж/(кг-К), б оф = 63,85Вт-м/(Н-К),

0,03-10 - 4 м 2 , Р ф = 203-10 -4 м 2 , J ф = 0,174 кг, С ф = 627 Дж/(кг-К), В i ф = 0

0, Р ф = 34 -10 5 Па, = 0,02-10 -4 м 2 , = 21,28 Вт-м/(Н-К), Р п = 20-10 5 Па, F n = 14,94- 10 -4 м 2 , = 420 Вт/(м 2 - К).

Проведенный тепловой расчет показал, что прогрев элементов конструкции достаточно высок, и необходимо при конструктивной проработке экспериментальных исследованиях обратить особое внимание на следующие "слабые" места в конструкции:

1) зазор между струйником и приемником из-за линейного удлинения струйника Дl c = 0,09 мм должен быть не менее 0,11- 0,12мм;

2) возможно нарушение целостности уплотнений по поршню и перетекание воздуха из полости в полость;

3) обмотки управляющего электромагнита, датчик обратной связи и монтаж должны быть защищены от воздействия горячего воздуха;

4) ленточный кабель должен быть теплоизолирован;

5) теплоотборник должен быть изолирован от обтекателя и иметь максимальную массу;

6) рабочий воздушный поток следует тормозить на входе теплоотборника;

7) пайки проводников следует по возможности заменить на сварку, промежуточные пайки исключить;

8) должен быть продолжен поиск новых обмоточных и монтажных проводов в случае увеличения времени работы привода, используемые в данной конструкции на пределе возможностей.

Зависимости температур стенок конструкции РП и воздуха на его входе от времени

1.8 Математическая модель рулевого привода

Для проектирования управляющей части и для расчета динамических характеристик привода будем использовать модель РП, состоящую из следующих элементов:

1. Исполнительный двигатель, описываемый следующей системой

уравнений:

2. Сумматор:

ДU = U вх - U ос

3. Релейный элемент:

U в - зона триггера,

U p - максимальное значение релейного усилителя.

4. Управляющий электромагнит:

ф - время эквивалентного запаздывания.

5. Корректирующий фильтр.

6. Датчик обратной связи: k ос = 1 В/рад.

Структурная схема такого привода будет иметь вид, представленный на рисунке:

Рис 1.8 Структурная схема РП.

1.9 Расчет автоколебательной системы ВДРП и ее динами ческих характеристик

Расчет автоколебательной системы воздушно-динамического РП проведем по следующему алгоритму:

1. Рассчитаем частоту автоколебаний:

(1.9.1)

- круговая частота, находится для режима наименьшей точности:

= 70°, Т = +50°, = 2рf = 2р 14,06 = 88,3 рад/с.

Примем = 6, тогда = 6М88,3 = 530 рад/с/

2. Определим требуемое время эквивалентного запаздывания управляющего электромагнита:

(1.9.2)

где ц нел - фазовая характеристика нелинейного элемента,

ц нел = - arcsin л, л. = 0,1 ?0,15;

ц к - фазовая характеристика корректирующего фильтра на частоте автоколебаний;

ц п - фазовая характеристика привода на частоте автоколебаний;

ц к = arctg

Найдем передаточную функцию привода:

Определим фазово-частотную характеристику привода при следующих данных: кг/см = 3,3НМм; кг/см = 0,72 НМм; рад/с; f = 0,01 кгМ смМc НМмМc 2 ; = =0,0436 рад; = 0,44 рад.

Время эквивалентного запаздывания электромагнита:

без влияния корректирующего фильтра.

3. Рассчитаем амплитуду автоколебаний по зависимости:

Амплитудная характеристика привода на частоте автоколебаний.

t о - время движения якоря электромагнита от упора до нейтрального положения, t о = 1,15 мс;

0,21 рад =12 0

4. Определим потребную амплитудную характеристику разомкнутого привода на рабочей частоте из условия обеспечения требуемого фазового сдвига замкнутого рулевого привода.

Фазовая характеристика электромагнита на рабочей частоте;

Фазовая характеристика нелинейного элемента;

Фазовая характеристика привода на рабочей частоте;

; = - 0,28; =0,076;

74,8 0 = 1,3 рад ; = 88,3·2,3·10 -3 = - 0,2 рад = - 11,5 0

74,8-11,5 = -86,3 0

Потребная амплитудная характеристика разомкнутого привода на рабочей частоте будет равна:

5. Определим необходимость установки корректирующего фильтра:

Так как с к > 1, то делаем вывод о том, что необходимо ставить корректитрующий фильтр.

7. Ставим корректирующий фильтр вида,

где постоянные времени определим по зависимости:

Определим фазовую характеристику фильтра на рабочей частоте:

Амплитудная характеристика фильтра на рабочей частоте:

Фазовая характеристика фильтра на частоте автоколебаний:

Амплитудная характеристика фильтра на частоте автоколебаний:

Определим параметр корректирующего фильтра на частоте автоколебаний:

Значит, выбранный параметр подходит для системы.

Определим амплитудно-фазовые характеристики системы с учетом корректирующего фильтра. Расчет произведем по следующим зависимостям:

tg= - 0,354; = - 19,4 0 .

Так как полученный фазовый сдвиг на рабочей частоте удовлетворяет требованиям, то выбранный фильтр подходит для системы.

8. Теперь необходимо рассчитать и построить динамические характеристики привода для различных режимов работы и при различных входных сигналах. Для расчета динамических характеристик воспользуемся программой, предназначенной для расчета амплитудно-фазовых характеристик замкнутой системы. Для каждого режима будем считать динамические характеристики при трех различных входных сигналах: U вx1 = 0,088 рад; U вx2 = 0,314 рад; U вx2 = 0,44 рад.

1 режим: ; Т = +50° С; t = 9,8 с; f = 14,06 Гц, Щ м = 65,6 рад/с;

М m = 3,3 Н*м; М н = 0,72 Н*м; Р изб = 4,85 атм; w 0 = 88,3 рад/с.

Рассчитаем необходимые данные для ввода:

Результаты расчета приведены в таблицах 1.9.1-1.9.3.

Таблица 1.9.1

U BX = 0,088 рад

Таблица 1.9.2

U вх = 0,314 рад

Uвх = 0,44 рад

2 режим: = 70°; Т = -50° С; t = 0,6 с; f = 3,59 Гц, = 65,631,5 рад/с; М т = 0,82 Н*м; М н = 0,324 Н*м; Р изб = 1,22 атм; w 0 = 22,57 рад/с, Т н = 4,5-10 -3 с, = 0,15, = 722,5.

Результаты расчета приведены в таблицах 1.9.4-1.9.6.

Таблица 1.9.4

U BX = 0,088 рад

Таблица 1.9.5

U BX = 0,314 рад

Таблица 1.9.6

U bx = 0,44 рад

3 режим: = 70°; Т = -50°С; t = 11,58 с; f = 11,57 Гц, = 59,6 рад/с;

М т = 2,49 Н*м; М н = 0,764 Н*м; Р изб = 3,699 атм;

т

Т н = 2,9 -10 -3 с, = 0,098, k Щ = 1367.

Результаты расчета приведены в таблицах 1.9.7-1.9.9.

Таблица 1.9.7

U bx = 0,088 рад

Таблица 1.9.8

U bx = 0,314 рад

Таблица 1.9.9

U bx = 0,314 рад

70°; Т = -50°С; t = 11,58 с; f = 11,57 Гц, = 59,6 рад/с;

М т = 2,49; М н = 0,764 Н*м; Р изб = 3,699 атм;

w 0 = 72,76 рад/с, = 0,307, m т = 1,74, Т с = 0,024с, Т г = 0,0074с,

Т н = 2,9 -10 -3 с, = 0,098, = 1367.

4 режим: = 0°; Т = +50°С; t = 1,5 с; f = 13,75Гц, = 58,02 рад/с;

М т = 30,05 Н*м; М н = 4,8 Н*м; Р изб = 44,53 атм;

w о = 86,4 рад/с, = 0,16, m m = 10,9, Т с = 0,047с, Т г = 0,0076с,

Т н = 1,17-10- 3 с, = 0,04, k Щ = 1331.

Результаты расчета приведены в таблицах 1.9.10-1.9.12.

Таблица 1.9.10

U bx = 0,088 рад

Таблица 1.9.11

U bx = 0,314 рад

Таблица 1.9.12

U bx = 0,44 рад

5 режим: = 70°; Т = -50°С; t = 5,8 с; f = 12,96 Гц, = 55 рад/с;

M ffl = 8,38 Н*м; М н = 2,502 Н * м; Р изб = 12,41 атм;

w 0 = 81,4 рад/с, у = 0,3, m m = 5,686, Т с = 0,0267с, Т г = 0,008с,

Т н = 1,16 -10" 3 с, ж = 0,054, к Щ = 1261,5.

Результаты расчета приведены в таблицах 1.9.13-1.9.15.

Таблица 1.9.13

U BX = 0,088 рад

Таблица 1.9.14

U BX = 0,314 рад

Таблица 1.9.15

U BX = 0,314 рад

Подобные документы

    Проект рулевого привода для малогабаритных летательных аппаратов, полет которых происходит в плотных слоях атмосферы. Технические требования к составным частям автоколебательной системы рулевого привода. Конструкции и принцип действия рулевого привода.

    дипломная работа , добавлен 10.09.2010

    Кинематический и энергетический расчет привода. Подбор электродвигателя, расчет открытой передачи. Проверочный расчет шпоночных соединений. Описание системы сборки, смазки и регулировки узлов привода. Проектирование опорной конструкции привода.

    курсовая работа , добавлен 06.04.2014

    Обоснование выбора нового привода коробки скоростей. Разработка зубчатой передачи и расчет шпинделя на усталостное сопротивление. Проектирование узлов подшипников качения и прогиба на конце шпинделя, динамических характеристик привода и системы смазки.

    курсовая работа , добавлен 09.09.2010

    Производители, описание конструкции, преимущества использования системы верхнего привода в буровых работах. Обоснование выбора кинематической схемы привода, проектирование валов редуктора. Укрупненный технологический процесс изготовления детали.

    дипломная работа , добавлен 18.04.2011

    Проектирование исполнительного двигателя системы газового рулевого привода. Анализ применения пневматических и газовых исполнительных устройств. Построение принципиальной схемы рулевого тракта. Обзор функциональных элементов систем рулевого привода.

    курсовая работа , добавлен 20.06.2012

    Обоснование выбора электродвигателя и кинематический расчет привода к машине для прессования кормов. Расчет общих параметров зубчатых передач, валов и подшипников привода. Конструктивные элементы соединений валов привода и расчет клиноременной передачи.

    контрольная работа , добавлен 29.08.2013

    Выбор структурной схемы привода и гидроцилиндра. Расчет конструктивных элементов гидропривода: насоса, электродвигателя, предохранительного клапана, гидрораспределителя. Нюансы построения нелинейной математической модели гидропривода. Переходные процессы.

    курсовая работа , добавлен 24.10.2012

    Обзор приводов и систем управления путевых машин. Расчет параметров привода транспортера. Разработка принципиальной гидравлической схемы машины. Расчет параметров и подбор элементов гидропривода, механических компонентов привода и электродвигателей.

    курсовая работа , добавлен 19.04.2011

    Кинематический и энергетический расчет привода электродвигателя и открытой клиноременной передачи. Проверочный расчет шпоночных соединений и подбор муфты. Описание конструкции рамы автомобиля, сборки, регулировки и смазки узлов привода электродвигателя.

    курсовая работа , добавлен 17.06.2017

    Проектирование и расчет привода, зубчатой передачи и узла привода. Силовая схема привода. Проверочный расчет подшипников качения, промежуточного вала и шпоночных соединений. Выбор смазочных материалов. Построение допусков для соединений основных деталей.

1

В представленной статье приведена разработанная линеаризованная математическая модель, описывающая динамику электрогидравлического привода ракеты-носителя. Модель состоит из передаточных функций его основных узлов. Предложено для оценивания качества функционирования электрогидравлических приводов в динамических режимах перейти от использования традиционных временных характеристик к частотным характеристикам. Проведено моделирование данной системы в среде «Matlab+Simulink», которая позволяет вводить нелинейности различного вида и описывать динамические процессы электрогидравлического привода, неподдающиеся линеаризации. Для анализа устойчивости исследуемой гидравлической системы управления при заданных значениях коэффициентов были получены логарифмические амплитудные фазовые частотные характеристики. Частотные характеристики позволяют анализировать структуры электрогидравлических систем на этапах проектирования, а также при эксплуатации существующих приводов, решать задачи синтеза путем подбора корректирующих звеньев.

электрогидравлический привод

передаточная функция

амплитудно-фазовая частотная характеристика

1. Боровин Г.К., Костюк А.В. Математическое моделирование гидравлического привода с LS-управлением шагающей машины. Препринт № 54. – М.: Институт прикладной математики. им. М.В. Келдыша РАН, 2001.

2. Дьяконов В.П. MATLAB R2006/2007/2008 + Simulink 5/6/7. Основы применения. – 2-е изд., перераб. и доп. Библиотека профессионала. – М.: СОЛОН-Пресс, 2008. – 800 с.

3. Крымов Б.Г., Рабинович Л.В., Стеблецов В.Г. Исполнительные устройства системы управления летательными аппаратами. – М.: Машиностроение, 1987.

4. Навроцкий К.Л. Теория и проектирование гидро- и пневмоприводов. – М.: Машиностроение, 1991. – 384 с.

5. Ратушняк А.И., Каргу Д.Л. Исследование путей построения и обоснование новых схемных решений систем диагностирования и контроля динамических режимов работы приводов ракетных двигателей // Современные проблемы улучшения тактико-технических характеристик ракетно-космической техники, ее создания, испытаний и эксплуатации: труды Всероссийской научно-практической конференции. – СПб.: ВКА имени А.Ф. Можайского, 2013. – С. 115–121.

Несмотря на тенденцию широкого внедрения ЭВМ в область анализа и синтеза автоматических систем частотные методы исследования динамики проектируемых систем не утратили своего значения. Реализация их на ЭВМ дает возможность в короткий срок получить ценную информацию о проектируемой системе. По амплитудно-фазовым частотным характеристикам можно судить о таких качественных показателях, как запасы устойчивости по амплитуде и по фазе, резонансная частота и другие .

Основной задачей для экспериментального снятия частотных характеристик является математическое описание динамики автоматических систем управления в виде передаточных функций .

Широкое применение электрогидравлических приводов (ЭГП) ракет-носителей обусловлено высокой плотностью создаваемых усилий на единицу площади гидроусилителя.

В гидроприводе использованы распределители с пропорциональным управлением и гидроцилиндр.

При проектировании ЭГП оценка устойчивости, качества регулирования и коррекции динамических характеристик привода является важной задачей. Для выполнения этой задачи необходимо разработать математическую модель процессов, протекающих в приводе.

На рис. 1 приведена функциональная схема электрогидравлического привода.

В состав электрогидравлического привода ракеты-носителя входят: электромеханический преобразователь, гидроусилитель, золотник, силовой гидроцилиндр, формирователь тока управления, блок обратной связи. ЭГП является автоматической системой регулирования с отрицательной обратной связью.

Рис. 1. Функциональная схема электрогидравлического привода

При составлении линейной модели ЭГП были приняты следующие предположения и допущения: коэффициенты расходов дросселей и рабочих окон золотника являются постоянными; перетечки рабочей жидкости через радиальные зазоры золотников и гидроцилиндров пренебрежимо малы; давление нагнетания слива постоянно; величины вязкости и модуля объёмной упругости не изменяются .

Уравнение цепи управления электромагнита в электромеханическом преобразователе имеет следующий вид:

где i - ток в ЭМП; TЯ - постоянная времени вихревых токов якоря ЭМП; iК - командный ток.

Уравнение в операторной форме и передаточная функция цепи управления электромагнита примут вид

(TЯs + 1)i = iК;

(2)

Уравнение сигнала рассогласования представлено в следующем виде:

C h = K FI (i - i OC) - K C A C ΔP ТЗ, (3)

где i OC = K OC X ШТ - ток обратной связи; K OC - коэффициент обратной связи; X ШТ - перемещение штока привода; C h - сигнал управления; h - величина смещения заслонки; K FI - коэффициент передачи усилия ЭМП; K C - коэффициент, учитывающий отношение диаметра торца сопла к диаметру сопла; A C - эффективная площадь заслонки; ΔP ТЗ - перепад давления на торцах золотника.

С другой стороны, динамика изменения перепада давления на торцах золотника описывается выражением

(4)

где TГУ - постоянная времени гидроусилителя; KPh - коэффициент усиления по давлению.

После преобразования передаточная функция звена, определяющего зависимость перепада давления на торцах золотника от смещения заслонки, будет иметь вид

(5)

Уравнение движения золотника имеет вид

где X З - перемещение золотника; m З - масса золотника; A ТЗ, C ТЗ, f mp З - площадь торцов, жесткость пружин на торцах и коэффициент вязкого трения золотника.

Отсюда передаточная функция золотника будет иметь вид

(7)

где - коэффициент передаточной функции золотника; - постоянные времени золотника.

Для структурной схемы узла управления, в состав которой входят ЭМП, гидроусилитель и золотник, из выражения (3) получим

(8)

Расход рабочей жидкости через силовой гидроцилиндр представлен в следующем виде:

а уравнение движения штока с поршнем гидроцилиндра с массой mП

где X ШТ - перемещение штока; P НАГ, P СЛ - давления нагнетания и слива; P1, P2 - давления в полостях гидроцилиндра; mП, AП - масса и площадь поршня гидроцилиндра; VЦ1,2 - объемы полостей гидроцилиндра; KСЖ - коэффициент, учитывающий сжимаемость рабочей жидкости; fmpП - коэффициент вязкого трения поршня; CE - эквивалентная жесткость рулевой проводки; ΔX - рассогласование между координатой штока и координатой массы качающейся части двигателя; ПРНАГ1,2, ПРСЛ1,2 - проводимости окон золотника; причем

ПРН1 = ПРС2 = KЗ(XЗ - XЗ0) при XЗ > XЗ0;

ПРН2 = ПРС1 = KЗ(-XЗ - XЗ0) при XЗ < -XЗ0,

KЗ - коэффициент расхода; XЗ0 - перекрытие золотника.

Из-за невозможности получения аналитического решения зависимости перепада давлений в полостях гидроцилиндра P1, P2 от перемещения золотника XЗ преобразуем уравнения для расхода рабочей жидкости через силовой гидроцилиндр путем линеаризации их левых частей. В результате получим

где

- коэффициенты линеаризации; QЗ - расход через основной золотник; ΔP2 - P1 - перепад давления в полостях гидроцилиндра; VЦ0 - объем полости цилиндра при симметричном положении поршня; X30, PЦ0 - перемещение золотника и давление нагрузки в точке линеаризации.

После преобразований получим линеаризованное уравнение расхода через основной золотник в операторной форме

Из уравнения движения штока с поршнем гидроцилиндра передаточная функция давления в силовом гидроцилиндре будет иметь вид

Структурная схема электрогидравлического привода, представленная на рис. 2, состоит из передаточных функций всех элементов, входящих в него.

Структурная схема электрогидравлического привода была смоделирована в среде «Matlab + Simulink» . При этом имеется возможность ввода нелинейностей различного вида, которые позволяют описать процессы неподдающиеся линеаризации. В модели привода используются нелинейности, которые ограничивают выходную величину. Такие блоки имитируют ограничение перемещения заслонки и золотника, входящих в состав узла управления, а также ограничение перемещения штока силового гидроцилиндра.

Результаты моделирования

Важной динамической характеристикой систем автоматического управления являются частотные характеристики, достоинство которых состоит в том, что частотные характеристики позволяют просто выявлять влияние того или иного параметра на динамические свойства системы (устойчивость, переходный процесс и т.д.). Для анализа устойчивости исследуемой гидравлической системы управления при заданных значениях коэффициентов в дифференциальных уравнениях были получены логарифмические амплитудные фазовые частотные характеристики (ЛАФЧХ) разомкнутой цепи. ЛАЧХ и ЛФЧХ для электрогидравлического привода представлены на рис. 3.

Рис. 2. Структурная схема электрогидравлического привода

Рис. 3. Логарифмические амплитудные и фазовые частотные характеристики разомкнутой цепи электрогидравлического привода

Запасы по частоте и амплитуде должны быть не менее определенных значений. Рекомендуемые запасы по амплитуде - 6-8 дБ, по фазе - 40°. Для данного электрогидравлического привода запас по амплитуде составляет 115 дБ, запас по фазе 56°, что является вполне достаточным для устойчивого функционирования привода. Проведенный анализ показывает, что данный электрогидравлический привод устойчив.

Заключение

Проектирование систем управления с помощью амплитудно-фазовых частотных характеристик дает возможность анализировать структуры и влияние параметров объекта и отдельных его частей, решать задачи синтеза регулятора путем подбора корректирующих звеньев, выполнять идентификацию по экспериментально снятым частотным характеристикам и решать другие задачи.

Библиографическая ссылка

Ратушняк А.И., Каргу Д.Л., Чудновский Ю.А., Шубин Д.А., Гридин В.В. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЭЛЕКТРОГИДРАВЛИЧЕСКОГО ПРИВОДА РАКЕТЫ-НОСИТЕЛЯ // Фундаментальные исследования. – 2016. – № 9-2. – С. 294-298;
URL: http://fundamental-research.ru/ru/article/view?id=40738 (дата обращения: 17.10.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

1. Основная часть

1.1 Классификация приводов

1.3 Технические требование к рулевому приводу

1.7 Проектирование управляющего электромагнита

1.8 Технические требования к составным частям автоколебательной системы рулевого привода

2. Конструкторская часть

3. Технологическая часть

3.1 Теоретические сведения

4. Экономика

4.1 Введение

4.3 Выводы

5. Охрана труда

5.1 Введение

5.2 Анализ вредных и опасных факторов при расчёте и проектировании замкнутой системы ВДРП

5.3.1 Расчёт освещённости

5.3.2 Шум на рабочем месте

5.3.3 Защита от электромагнитного и рентгеновского излучения

5.3.4 Электробезопасность

5.3.5 Пожарная безопасность

5.4 Охрана окружающей среды

5.5 Выводы

Заключение

Список использованной литературы

Введение

В настоящее время к разработке приводов для малогабаритных управляемых ракет (МУР) предъявляются все более жесткие требования по техническим и эксплуатационным характеристикам. Поэтому процесс создания перспективных МУР должен основываться не только на усовершенствовании ранее разработанных конструкций и схем реализации приводов, но и на поиске новых технических решений, отличающихся от традиционных и дающих очередной скачок в развитии данного вида техники. Таким принципиально новым решением оказалось создание и использование так называемых воздушно-динамических рулевых приводов (ВДРП).

Ранее применяемые рулевые привода традиционной конструкции со специальным источником питания обладают следующими недостатками: во-первых, они обеспечивают мощность источников на уровне максимально потребной, что необходимо только лишь на определенном участке полета; во-вторых, при повышении дальности и времени полета масса источника питания увеличивается. Ужесточающиеся массогабаритные характеристики не позволяют реализовать традиционные привода со специальными системами согласования мощности привода с мощностью, расходуемой на управление. Поэтому рациональным решением явился отказ от специального источника питания и использование для перемещения рулевых органов энергии движения ракеты в газовой среде, т.е. использование энергии обтекающего корпус ракеты воздушного потока.

Основой данного технического решения является процесс трансформации энергии двигательной установки, сообщающей ракете кинетическую энергию движения. В результате движения на корпусе ракеты возникает распределенное поле давлений, определяющее силу ее лобового сопротивления в обтекающем ракету потоке воздуха. Располагая устройства забора и сброса воздуха на корпусе в зонах соответственно повышенного или пониженного давления, формируют рабочий поток определенной мощности, при этом в соответствии с законом сохранения энергии возрастает коэффициент лобового сопротивления. Последнее, при использовании воздушно-динамических рулевых приводов требуется увеличение массы пороховой шашки двигательной установки для сохранения неизменными времени полета и величины конечной скорости. Однако анализ соотношения масс показывает, что эффективность данного технического решения по сравнению с рулевыми приводами, имеющими специальный источник питания, тем выше, чем больше максимальная скорость и время управляемого участка полета по сравнению со временем работы двигательной установки. При этом достигается уменьшение массы пассивных элементов конструкции и повышение технологичности за счет исключения трудоемких элементов конструкции: аккумуляторов давления, трубопроводов и т.п. Отличительной особенностью является то, что он функционирует практически все время, пока движется ракета, а использование единого воздушного потока, нагружающего рулевые органы воздушно-динамических рулевых приводов и одновременно являющегося энергоносителем для сохранения неизменности функциональных характеристик по времени полета. Практическая реализация воздушно динамических рулевых приводов с различными типами силовых систем показала их значительное превосходство по функциональным, массогабаритным и техническо-технологическим характеристикам над приводами традиционной конструкции. Поэтому в настоящее время актуальной является проблема оснащения вновь разрабатываемых ракет приводами воздушно-динамического типа, а значит и разработки эффективных методик и алгоритмов их проектирования.

1. ОСНОВНАЯ ЧАСТЬ

Управление летательным аппаратом (ЛА) является важнейшей научной и практической проблемой современного самолето- и ракетостро е ния.

Для обеспечения полета ЛА по требуемой траектории применяется совокупность различных технических средств, представляющая собой систему упра вления.

По функциональному назначению входящие в систему управления ЛА устройства можно разбить на три группы:

устройства формирования управляющего воздействия с сигнала управления;

органы управления, которые создают управляющие усилия;

рулевые приводы, приводящие органы управления в действие в соответствии с управляющим воздействием.

Так как данный дипломный проект посвящен расчёту и проектиров а нию замкнутой системы рулевого привода, рассмотрим более подробно 3-тью группу устройств.

Рулевые приводы осуществляют в системе управления функционал ь ную взаимосвязь между устройствами первой и второй групп. Поэтому н а ряду с функциональными элементами, обеспечивающими создание силов о го воздействия на органы управления (источники питания, кинематич е ски связанные с органами управления исполнительные двигатели, элементы энергетических магистралей), рулевые приводы включают функционал ь ные элементы, которые устанавливают соответствие этого силового сигн а ла формируемому в системе управления управляющему сигналу (преобр а зователи и усилители электрических сигналов, электромеханические преобразователи, различного вида датч и ки).

Для конкретизации областей исследования задач, стоящих при разработке рулевых приводов, в их составе выделяют силовую и управля ющую системы. Силовая система объединяет функциональные элементы рулевого привода, которые непосредственно участвуют в преобразовании энергии источника питания в механическую работу, связанную с перемещением позиционно нагруженных органов управления.

Управляющую систему составляют функциональные элементы рулевого привода, которые обеспечивают изменение регулируемой величины (координаты положения органов управления) по заданному или выработанному в процессе полета ЛА закону управления.

Структура, характеристики и конструкция рулевого привода определяются типом летательного аппарата. В данном дипломном проекте рассматривается рулевой привод для малогабаритных ЛА, полет которых происходит в плотных слоях атмосферы. Такие рулевые приводы осуществляют перемещение, как правило, поворотных аэродинамических рулей ЛА и характеризуются высоким быстродействием, способностью развивать значительные усилия при низкой массе и малых габаритах конструкции. Их энергетические и габаритно-массовые характеристики существенно зависят от вида используемой энергии.

Бурное развитие ЛА в пятидесятых годах заставило применять пневмопривод с воздушным аккумулятором давления в системах управления ЛА из-за того, что он был наиболее дешевым, простым и надежным рулевым механизмом.

В шестидесятых годах получили распространение рулевой привод на горячем газе, широко применяемый и в настоящее время. Переход от воздушного аккумулятора давления в системах рулевых приводов, занимающего значительный объем в ЛА, к малогабаритному и простому в изготовлении пороховому генератору газа позволил улучшить габаритно-массовые и эксплутационные характеристики рулевых приводов.

Создание в семидесятых годах рулевого привода без бортового источника питания - воздушно-динамического - положило начало новому этапу совершенствования рулевых приводов малогабаритных ЛА.

Следует также упомянуть о существовании электромагнитных рулевых приводов, в которых управления лопастями происходит напрямую силовым электромагнитом, напитываемым от аккумуляторной батареи. Однако они также не получили широкого применения вследствие малой мощности и большого веса источника питания электромагнита.

1.1 Классификация приводов

Приводы лопастей предназначены для преобразования электрич е ских сигналов управления в механическое перемещение лопастей, жестко связанных с подвижными частями исполнительного дв и гателя.

Исполнительный двигатель преодолевает при этом действующие на лопасть шарнирные нагрузки, обеспечивая необходимую скорость и нео б ходимое ускорение при обработке заданных выходных сигналов с требуемой динамич е ской точностью.

На базе уже существующих конструкций приводы могут быть кла ссифицированы:

по типу силовой системы:

воздушно - динамические;

пневматические;

горячегазовые;

электромагнитные;

по принципу управления лопастями:

релейное двух и трехпозиционное управление;

пропорциональное управление;

по схеме управляющей системы:

автоколебательная с двух и трехпозиционным управлением;

самонастраивающаяся с генератором вынуждающих колебаний и с двух и трехпозиционным управлением;

автоколебательная с генератором вынуждающих колебаний и с двух и трехпозиционным управлением;

по типу исполнительного двигателя:

одностороннего и двух стороннего действия;

полуоткрытого и закрытого типа;

по типу распределительного устройства:

поворотный золотник на входе, на выходе, на входе и выходе одновременно;

струйная трубка;

клапанное распределительное устройство на входе, выходе, входе и выходе одновременно.

1.2 Обоснование выбора типа привода

Рулевой привод предназначен для преобразования электрических сигналов, поступающих с наземной аппаратуры управления, в соответствующие угловые отклонения аэродинамических рулей, управляющих полетом летательных аппаратов.

При сравнении характеристик различных типов и схем рулевых приводов отмечено, что при заданных шарнирных нагрузках и требуемых динамических характеристиках целесообразно для обеспечения минимальных габаритов и массы летательного аппарата применение пропорционального рулевого привода, использующего в качестве рабочего тела скоростной напор встречного потока воздуха.

В этом случае исчезает необходимость размещения специального источника питания.

Для малогабаритных управляемых ракетных снарядов наиболее часто проектируются воздушно-динамические рулевые привода, обладающие рядом преимуществ:

· независимость массы и объёма рулевого привода от времени работы, так как отсутствует специальный источник питания;

соответствие потребного и развиваемого момента рулевого привода;

соответствие потребной и развиваемой скорости;

практически постоянство фазового сдвига на частоте вращения ракеты вследствие эквивалентности скорости привода и скор о сти ракеты по крену, движущего момента и момента шарни р ной нагрузки;

применение в конструкции недефицитных материалов вследствие низких давлений и температур рабочего тела.

Для сравнения характеристик различных типов приводов приведём следующую таблицу:

Таблица 1.1 Сравнительная характеристика различных типов приводов

Скорость ЛА

Тип рулевого привода

ВДРП с сил. сист. открытого типа

электромагнитный

ВДРП с сил. сист. закрытого типа

на горячем газе

на сжатом газе

Тип бортового источника питания

электрическая батарея

Баллон со сжатым гелием

Объём привода с источником питания,

Масса привода с ист. питания, кг

Трудоёмкость изготовления,

Наиб. момент нагрузки,

Наибольший развиваемый момент,

Диапазон изменения ФЧХ, град.

Анализ данных таблицы показывает, что ВДРП значительно превосходят по своим характеристикам рулевые приводы отечественных и зарубежных ЛА.
ВДРП управляемого ЛА с дозвуковыми скоростями полета по сравнению с электромагнитными рулевыми приводами ЛА имеет в 2.5 раза меньший объем, в 5 раз меньшую трудоемкость изготовления.
Рулевой привод ЛА с транс- и сверхзвуковыми скоростями полета по сравнению с рулевыми приводами отечественных ЛА и американского ЛА ТОУ имеет в 3-4 раза меньшую массу, в 4 раза меньшую трудоемкость изготовления.

1.3 Технические требования к рулевому приводу

Рулевой привод (РП) одноканальный. Рули складываются внутрь отсека. Пиротехническая задержка раскрытия рулей в течение

Зависимость отклонения рулей от входного сигнала - пропорциональная.

РП работает от скоростного напора воздуха. Зависимость избыточного давления P и на входе воздухозаборника от времени при различных температурах окружающей среды представлена на рис. 1.1.

Рис. 1.1. Зависимость избыточного давления P и на входе воздухозаборника от времени t.

РП должен быть работоспособным при:

· числах Маха (рис. 1.2)

· частотах вращения от 4 до 13 Гц (рис. 1.3)

Рис. 1.2 Зависимость избыточного давления от значений числа Маха

Рис. 1.3 Зависимость частоты вращения ракеты от времени t

шарнирных моментах, представленных на рис. 1.4

Рис. 1.4 Зависимость момента шарнирной нагрузки M ш от времени t

Изменение фазового сдвига с учётом частот вращения должно соответствовать значениям

Максимальный угол отклонения рулей должен быть ±15°.

1.4 Математическое описание функционирования воздушно-динамического привода

Состояние физического тела (однородного газа) в некотором проточном объеме в каждый момент времени характеризуется совокупностью следующих параметров:

давление;

удельный вес;

тепература.

Для этого газа, полагая его идеальным, справедливо уравнение состояния:

Из этого уравнения следует, что независимых величин, характеризующих состояние газа в проточной полости, две. В термодинамике для их определения используется два закона:

закон сохранения энергии;

закон сохранения массы.

Принимаем допущение о том, что параметры газа являются медленно меняющимися по сравнению с изменением сигналов управления. Это позволяет разбить уравнение нелинейной нестационарной модели привода на две группы уравнений:

уравнения с медленно меняющимися координатами;

уравнения с быстро меняющимися координатами.

Расчет газодинамической системы привода по системе нелинейных алгебраических уравнений построен на основе схемы замещения (рис. 1.5).

Рис. 1.5 Схема замещения силовой системы

При разработке РП применяется система математических моделей:

а) нелинейная, используемая для расчета динамических характеристик РП;

б) модель параметрической идентификации, используемая для расчета конструктивных параметров исполнительного двигателя.

Нелинейная математическая модель получена на основе законов сохранения массы и энергии и включает в себя следующие уравнения:

для полости ресивера:

для рабочих полостей (i=1,2):

для полости отсека:

Законы сохранения массы можно записать в следующем виде:

для полости ресивера:

для рабочих полостей (i=1,2):

для полости отсека

Удельный приход (расход) энергии находим по следующим зависимостям:

Массовый секундный приход (расход) газа в рабочей полости определяется по формулам:

Функции режима течения определяются по формулам:

Полное математическое описание исполнительного двигателя включает в себя еще и уравнения, полученные из уравнения состояния. Они имеют вид:

полость ресивера:

рабочие полости (i=1,2):

полость отсека:

Для определения объёма имеем следующие зависимости:

Механическая подсистема исполнительного двигателя описывается следующим уравнением:

Эффективность сечения входного и выходного отверстий распределительного устройства типа ”струйная трубка” с достаточной точностью можно описать с помощью следующих уравнений:

для входного сечения:

для выходного сечения:

Коэффициент колебательности;

p П1,2 - давление в полостях привода;

k - показатель адиабаты;

П Р - удельный расход энергии в ресивере;

G Р1,2 - удельный массовый секундный расход рабочего тела в ресивере;

П П1,2 - удельный расход энергии в рабочих полостях;

G П1,2 - удельный массовый секундный расход рабочего тела в полостях;

S П - площадь поршня;

M - угол поворота и максимальный угол поворота рулей;

W 1,2 - объём рабочих полостей;

Т П1,2 - температура рабочего тела в полостях;

П1,2 - удельный вес рабочего тела в полостях;

R - универсальная газовая постоянная;

I - приведённый суммарный момент инерции подвижных частей;

f - коэффициент вязкого трения;

m ш () - жёсткость шарнирной нагрузки;

М СТР - момент сухого трения;

k 0 - газодинамический коэффициент;

p P - давление в ресивере;

Y P1,2 , Y П1,2 - газодинамические функции режима течения;

S ВХ1,2 , S ВЫХ1,2 - эффективные площади втекания и истечения в рабочих полостях;

p 0 - давление в отсеке;

с - коэффициент, характеризующий регулируемое втекание;

M - угол поворота и максимальный угол поворота якоря управляющего электромагнита;

а, У - коэффициенты, характеризующие регулируемое истечение.

1.5 Разработка рулевого привода

Необходимо спроектировать рулевой привод, обеспечивающий воспроизведение управляющих сигналов в полосе частот от 28 с -1 до 91 с -1 и амплитуд до 15° угла поворота рулей с фазовым сдвигом 15°±13°. Процесс разработки привода представлен на схеме рис. 1.6.

Разработка малогабаритной танковой управляемой ракеты накладывает существенные ограничения на габариты и массу рулевого привода. Кроме того, в настоящее время не менее актуальна разработка технологичных, выполненных из отечественных недефицитных материалов и, следовательно, имеющих низкую себестоимость рулевых приводов. Габариты и масса РП существенно зависят от потребной выходной мощности и определяются применяемыми типом и структурой системы привода. Для пропорционального закона управления рулевыми органами наименьшие габариты обеспечиваются при применении автоколебательной системы привода с двухпозиционным управлением (рис. 1.7).

В качестве привода управляемой ракеты выбран воздушно-динамический рулевой привод со струйным распределительным устройством.

Воздушно-динамический РП не требует специального источника питания, габариты которого в значительной степени зависят от времени работы и мощности привода.

Рис. 1.6 Алгоритм разработки рулевого привода

Рис. 1.7 Автоколебательная система привода с двухпозиционным управлением

Для воздушно-динамического привода характерно согласование действующих шарнирных нагрузок с развиваемым приводом моментом, а также скорости вращения по крену со скоростью перемещения рулей, вследствие чего по времени полёта обеспечивается практически постоянный фазовый сдвиг на частотах вращения ракеты по крену.

Стабильность динамических характеристик ВДРП по времени управляемого полёта ракеты позволяет расширить допуски на конструктивные параметры рулевых приводов, работающих на традиционных источниках питания: сжатом газе высокого давления, горячем пороховом газе, электрической энергии.

Выбранное распределительное устройство типа "струйная трубка" позволяет применить управляющий электромагнит поворотного типа, надёжный в работе при внешних воздействующих факторах. Нагрузка на управляющий электромагнит с распределительным устройством типа "струйная трубка" незначительна. Динамические характеристики управляющего электромагнита практически не зависят от величины входного давления.

Проектирование автоколебательной системы ВДРП проводится по математической модели параметрической идентификации:

Уравнение суммирующего устройства:

Уравнение корректирующего фильтра:

Уравнение релейного элемента усилителя:

Уравнение управляющего электромагнита:

Уравнение исполнительного двигателя:

Расчёт обобщённых и конструктивных параметров производится для режима наихудших энергетических возможностей, который соответствует максимуму отношения потребной мощности к развиваемой при отработке гармонического сигнала с амплитудой? 0 и частотой при шарнирной нагрузке, имеющей пружинный характер, т. е. из условия минимума энергетической функции привода:

где - частота вращения ракеты, рад/с;

Момент шарнирной нагрузки, Н м;

Газодинамическая функция режима течения (рис. 1.8);

Величина избыточного давления, Па;

Температура окружающей среды, К;

t - время полёта, с.

Режим наихудших энергетических возможностей соответствует полёта при температуре (рис. 1.9). Для указанного режима значения параметров следующие:

Число маха М ………………………………………………………1.17;

Момент шарнирной нагрузки ………………………-0.937;

Избыточное давление ………………………………..1.22?10 5 ;

Частота вращения по крену ……………………………..9.3±1.9.

Рис. 1.8 График зависимости числа Y от величины избыточного давления.

Рис. 1.9 Энергетическая функция привода

Значение выбирается из условия обеспечения фазовой частотной характеристики разомкнутого контура, близкой к заданному номинальному значению при возникновении ограничений выходной координаты силовой части привода. При таком значении? обеспечиваются меньшие фазовые сдвиги, чем при расчёте? по минимуму расхода, но расход рабочего тела через систему увеличивается, что в случае применения воздушно-динамического привода не является ограничением для проектирования.

Максимальный развиваемый момент определяется по зависимости:

Значение произведения площади поршня на плечо кинематической передачи определяется по зависимости:

Потребная скорость для обеспечения отработки гармонического сигнала рассчитывается по формуле:

Рис. 1.10 График зависимости числа? от величины избыточного давления

Структура и параметры автоколебательной системы воздушно-динамического привода определяются для режима наихудших фазовых сдвигов, соответствующего максимуму энергетической функции при нагрузке, имеющей характер перекомпенсации, то есть режима (рис. 1.11). Для указанного режима значения параметров следующие:

Число маха М ……………………………………………………..0.894;

Момент шарнирной нагрузки ………………………..0.265;

Избыточное давление ………………………………0.667?10 5 ;

Частота вращения по крену ……………………………….7.8±2.

Рис. 1.11 Энергетическая функция привода

Рассчитаем структуру и параметры автоколебательной системы ВДРП на соответствующего режима:

а) рассчитывается допустимая минимальная частота автоколебаний из условия обеспечения разноса рабочей частоты? 0 и частоты автоколебаний? а:

б) рассчитывается фазовый сдвиг? n и амплитудная характеристика A n исполнительного двигателя на рабочей частоте и частоте автоколебаний.

Рис. 1.12 Структурная схема исполнительного двигателя РП

Рассчитаем максимальную скорость на этом режиме, исходя из? m на предыдущем:

Тогда новое? m примет значение:

Из рис. 1.13 определим фазовые сдвиги и величины амплитудной характеристики исполнительного двигателя РП на рабочей частоте и частоте автоколебаний.

Для данного режима определены соответствующие значения:

в) определяется время эквивалентного запаздывания управляющего электромагнита:

где - фазовый сдвиг нелинейного элемента на частоте,

Фазовый сдвиг корректирующего фильтра на частоте автоколебаний, выбираемый при первой итерации равным нулю.

Рис. 1.13 Амплитудно-фазовая частотная характеристика исполнительного двигателя рулевого привода

г) рассчитываются фазовые характеристики разомкнутой и замкнутой автоколебательной системы воздушно-динамического привода.

Фазовая характеристика разомкнутой системы рассчитывается по следующей формуле:

Фазовый сдвиг исполнительного двигателя РП,

Фазовая характеристика управляющего электромагнита (рис. 1.15),

Фазовый сдвиг корректирующего фильтра (рис. 1.14),

Фазовый сдвиг нелинейного элемента, .

Фазовая характеристика замкнутой системы:

Амплитудная характеристика разомкнутой системы.

При необходим фильтр с ослаблением амплитудной характеристики на частоте автоколебаний:

Рис. 1.14 Амплитудно-фазовая частотная характеристика корректирующего фильтра

Рис. 1.15 Фазовая характеристика управляющего электромагнита

Фазовая характеристика разомкнутой системы воздушно динамического рулевого привода представлена на рис. 16, замкнутой - на рис. 1.17.

Рис. 1.16 Фазовая характеристика разомкнутой системы ВДРП

Рис. 1.17. Фазовая характеристика замкнутой системы ВДРП

1.6 Оценка влияния изменения параметров математической модели ВДРП на его характеристики

Проследим, каким образом влияют на характеристики привода изменения таких величин, как скорость движения рулей, момент шарнирной нагрузки, момент инерции рулей, время эквивалентного запаздывания управляющего электромагнита, а также коэффициенты трения.

Пусть и изменяются в пределе ±15%, а и f - на ±50%.

Наиболее существенные изменения происходят, когда вышеназванные величины изменяются одновременно либо в сторону уменьшения, либо в сторону увеличения. Рассмотрим два крайних случая:

1) и увеличим на 15%, а и f - на 50%.

Результаты отображены на рис. 1.18-1.20

Рис. 1.18 Амплитудно-фазовая характеристика исполнительного двигателя рулевого привода

Рис. 1.19 Фазовая характеристика разомкнутой системы ВДРП

Рис. 1.20 Фазовая характеристика замкнутой системы ВДРП

2) и уменьшим на 15%, а и f - на 50%

Результаты отображены на рис. 1.21-1.23

Рис. 1.21 Амплитудно-фазовая характеристика исполнительного двигателя рулевого привода

Рис. 1.22 Фазовая характеристика разомкнутой системы ВДРП

Рис. 1.23 Фазовая характеристика замкнутой системы ВДРП

Как можно заметить из вышеприведённых графиков, ни одно из проделанных изменений не привело к выходу рулевого привода из заданного коридора фазовых сдвигов (рис. 1.20 и 1.23), что свидетельствует о высокой динамической точности разрабатываемого ВДРП. Проверим, какую роль играют величины постоянных времени T ф1 и T ф2 .

Рассмотрим три варианта фильтра (рис. 1.24, 1.25):

Графики фазовых характеристик разомкнутой и замкнутой систем будут иметь вид, представленный на рис. 1.26-1.29.

Рис. 1.24 Амплитудные частотные характеристики нескольких вариантов корректирующего фильтра

Рис. 1.25 Фазовые частотные характеристики нескольких вариантов корректирующего фильтра

Рис. 1.26 Фазовые характеристики разомкнутой системы ВДРП

Рис. 1.27 Фазовые характеристики замкнутой системы ВДРП

Рис. 1.28 Фазовые характеристики разомкнутой системы ВДРП

Рис. 1.29 Фазовые характеристики замкнутой системы ВДРП.

1.7 Технические требования к составным частям автоколебательной системы рулевого привода

а) воздухозаборник должен обеспечивать:

Отношение площадей воздухозаборника к площади струйника:

Отношение площадей ресивера к площади струйника:

Выступание воздухозаборника за обтекатель не менее 5 мм.

б) рулевой привод должен обеспечивать:

Максимальную скорость при давлении

и температуре:

Максимальный развиваемый момент при давлении

Управляющий электромагнит в реальных условиях эксплуатации должен обеспечивать время эквивалентного запаздывания:

в) постоянные времени корректирующего фильтра должны быть:

1.8 Проектирование управляющего электромагнита

В качестве управляющего электромагнита выбираем нейтральный электромагнит с угловым перемещением якоря. Управляющий электромагнит, на оси которого закреплён струйник, установлен на основании распределительного устройства. Ток, протекающий через обмотки этого электромагнита, при поступлении команды управления, создает магнитный поток, притягивающий якорь к одному из упоров, разворачивая диск распределительного устройства в одно из крайних положений.

Расчёт параметров управляющего электромагнита проводится из обеспечения требуемых динамических характеристик при заданном напряжении питания и токе потребления обмоток управляющего электромагнита. Расчёт проводится графоаналитическим способом в соответствии с алгоритмом (см. рис. 1.30).

В данном дипломном проекте при проектировании ВДРП в целях унификации с ранее изготовленными подобными рулевыми приводами воспользуемся одним из уже существующих управляющих электромагнитов и расчёт производить не будем.

Размещено на http://www.allbest.ru/

Рис. 1.30 Алгоритм расчета УМ

2. КОНСТРУКТОРСКАЯ ЧАСТЬ

2.1 Описание конструкции рулевого привода

Рулевой привод предназначен для преобразования электрических сигналов, поступающих с наземной аппаратуры управления, в соответствующие угловые отклонения аэродинамических рулей, управляющих полетом летательных аппаратов. В данном дипломном проекте разработан автоколебательный одноканальный воздушно-динамический рулевой привод полуоткрытого типа с регулируемым на выходе распределительным устройством типа «струйная трубка» (рис. 2.1).

Рис. 2.1 Рулевой привод

1 - основание; 2 - поршень; 3 - руль; 4 - втулка; 5 - ось; - подшипник; 7 - пружина; 8 - вилка; 9 - потенциометр обратной связи;10 - шпангоут; 11 - трубка; 12 - фильтр; 13 - пружина; 14 - канал; 15 - приемное отверстие; 16 - поршень; 17 - чехол; 18 - манжета; 19 - основание; 20 - штифт; 21 - серьга; 22 - ось; 23 - ось; 24 - пружина; 25 - подшипник; 26 - корпус; 27 - планка;28 катушка управления; 29 - якорь; 30 - приемник; 31 - струйник; 32 - воздухозаборник; 33 - электромагнит управляющий;34 - электровоспламенитель; 35 - силовой цилиндр; 36 - планка.

Привод состоит из следующих основных частей:

а) исполнительный двигатель с аэродинамическими рулями;

б) управляющий электромагнит с распределительным устройством.

Базовой деталью рулевого привода является шпангоут 10, на котором установлены оси 5 с рулями 3, втулками 4, пружинами 7. Рули соединены между собой осью 22, на этой же оси находится вилка 8, связывающая рули с потенциометрическим датчиком обратной связи 9. Шпангоут 10 является базовой деталью, к которой крепится основание 1. На основании установлены два силовых цилиндра 35.

Управляющий электромагнит 33 состоит из корпуса 26, в котором на подшипниках 25 установлена ось 23 с якорем 29, двух катушек управления 28, соединенных планкой 27, закреплённой в корпусе 26, и пружины 24.

Силовой цилиндр 35 состоит из основания 19, на котором закреплена эластичная манжета 18, закрытая чехлом 17, поршня 16, соединённого с манжетой 18 и серьги 21, связывающей поршень 16 с осью 22.

Рули 3 и воздухозаборники 32 в сложенном положении удерживаются планкой 36, закреплённой штифтами 20 на шпангоуте 10.

2.2 Описание принципа действия рулевого привода

Принцип действия РП состоит в следующем.

При полёте управляемой ракеты встречный поток воздуха через отверстия в воздухозаборниках 32 проходит через струйное распределительное устройство в рабочие полости рулевых машин. В автоколебательном приводе генерируются автоколебания. С усилителя подается поочерёдно напряжение на одну или другую обмотки управляющего электромагнита. При поступлении сигнала в одну из обмоток, якорь притягивается к ней и устанавливает струйник напротив соответствующего окна приёмника. Воздух поступает в рабочую полость привода, и в ней устанавливается максимальное давление; в это время вторая рабочая полость опорожняется. Под действием разности давлений на поршни рулевых машин происходит поворот оси рулей. Разность средних давлений в полостях и угол поворота рулей пропорциональны входному сигналу.

3. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

3.1 Теоретические сведения

Сборка является заключительной стадией технологического процесса изготовления деталей.

К сборочно-технологическим процессам относят соединение деталей и сборочных единиц для образования изделия с его последующей регулировкой, контролем и испытанием.

Технологический процесс сборки осуществляют, руководствуясь нормативными документами, которые оформляются в соответствии с единой системой технологической документации (ЕСТД).

ЕСТД представляет собой комплекс стандартов, устанавливающих взаимосвязанные правила и положения о порядке разработки, оформления и обращения единой технологической документации для всех предприятий и организаций приборостроительных и машиностроительных отраслей промышленности.

Проектированием технологических процессов и составлением нормативной документации занимаются технологические отделы и бюро предприятия.

Для разработки технологического процесса сборки изделия или сборочной единицы технологу необходимо иметь сборочные чертежи, спецификацию деталей по сборочным единицам, технологические условия на сборку, испытания и приемку, годовой план выпуска изделия. Кроме того, в распоряжении технолога должны находиться данные о парке оборудования и электроснабжении цехов, о применяемом инструменте, приспособлениях, контрольно-измерительной аппаратуре, а также стандарты предприятия.

Подготовку к проектированию технологического процесса начинают с анализа конструкции по чертежам, схемам, техническим условиям и программе испытания. Проектирование технологического процесса сборки содержит следующие этапы:

1. Определение последовательности сборки.

2. Определение перечня и последовательности работ при сборке, построение схемы технологического процесса.

3. Нормирование операций.

4. Определение организационной формы сборки и синхронизация операций по ритму.

В данном разделе дипломного проекта рассмотрены первые три этапа.

3.2 Определение последовательности сборочного процесса

Основой для определения последовательности сборки изделия является конструкторская документация, в которой изделие разбито на сборочные единицы. Характерной особенностью сборочной единицы является возможность сборки обособленно от других частей изделия. Благодаря этому процесс сборки сложных изделий состоит из переходов, выполняемых не только последовательно друг за другом, но и параллельно друг другу.

3.3 Построение схемы технологического процесса сборки

Схема технологического процесса сборки служит для облегчения разработки основной технологической документации - маршрутных и операционных карт. Схема технологического процесса наглядно и детально отражает последовательность и структуру сборки, включая регулировку, контроль и испытания изделия.

Построение схемы ведется по следующим правилам:

1. Каждый элемент изделия имеет условное обозначение. Сборочные единицы принято обозначать квадратом, а детали - кругом. Стандартные и поставляемые изделия изображаются со штриховкой.

2. Приспособления, применяемые вместо деталей или сборочных единиц, без которых не может быть выполнена сборка, указываются на схемах как детали или сборочные единицы, но пунктиром.

3. Процесс сборки изображается линией, а переходы точками на этой линии. Линия проводится в направлении от базового элемента изделия к собранному объекту.

Соединение деталей или сборочной единицы с собранной ранее частью изделия или базовой деталью, использование материалов обозначается линией, присоединяемой к сборочной линии. Крепежные детали и прикрепляемые ими элементы изделия соединяются со сборочной линией в одной точке.

4. Снимаемые (демонтируемые) детали, сборочные элементы, приспособления указываются на схемах со стрелкой, направленной от линии сборки.

5. Схема поясняется указанием о выполнении соединений, регулировки и контроля при сборке.

4. ЭКОНОМИКА

4.1 Введение

Процесс создания и освоения новой техники является комплексным, охватывающим большой промежуток времени и большое количество исполнителей. Исходя из новизны создаваемого изделия и степени его комплексности в практике планирования СОНТ применяются два метода:

Метод, основанный на разработке ленточных планов - графиков;

Метод, основанный на разработке сетевых графиков.

Метод ленточных планов - графиков используется при относительно краткосрочных разработках и при небольших количествах исполнителей.

Сетевое планирование представляет собой систему планирования комплекса работ, направленную на достижение конечной цели.

4.2 Составление и расчёт сетевого графика

Сетевое планирование основано на графическом изображении комплекса работ, которое отображает их логическую последовательность, взаимосвязь и длительность. Сетевое планирование имеет значительное преимущество перед обычным методом планирования и управления:

- наиболее полно учитывается связь между различными работами;

- появляется возможность более эффективного распределения срока окончания работ или ресурсов;

- появляется возможность более эффективного распределения ресурсов за счёт оптимизации планов;

- возможность применения ЭВМ;

- наглядное и удобное изображение комплекса работ.

Сетевое планирование позволяет вести разработку в оптимальном режиме. Сетевая модель отображает логическую последовательность и взаимосвязь работ и изображается в виде графика, состоящего из стрелок и кружков.

Кружки на сетевом графике обозначают совершение отдельных событий, отображающих результаты выполнения работ. Продолжительности события не имеют.

Стрелки обозначают работы, то есть действия, которые совершаются для совершения событий. Работы имеют продолжительность, которая на графике указывается стрелкой.

Каждая работа имеет начало и окончание. На графике начало стрелки находится в предыдущем событии, а окончание в последующем.

Работы могут быть трёх типов:

- действительными;

- ожидаемыми;

- фиктивными.

Путем называется непрерывная последовательность работ между двумя событиями сетевого графика, в котором конечное событие каждой работы совпадает с начальным событием следующим за ней событием.

Существует три вида путей:

- полный путь (от начального до конечного события);

- предшествующий путь (от начального до данного события);

- последующий путь (от данного до конечного события).

Критическим путем является полный путь, имеющий наибольшую длительность. Критический путь определяет продолжительность процесса в целом.

Для завершения всего комплекса работ в более ранние сроки необходимо принимать меры по сокращению длительности работ, лежащих на критическом пути. При расчёте сетевых графиков определяют ранние и поздние сроки начала и окончания работ.

Ранний срок свершения события - это срок, необходимый для выполнения всех работ, предшествующих данному событию, т.к. это событие свершится только тогда, когда будут выполнены все работы, для которых оно является конечным (рис. 4.1).

Рис. 4.1 Ранний срок свершения события

Поздний срок свершения события - это такой срок, превышение которого вызовет аналогичную задержку наступления завершающего события графика. Поэтому расчет поздних сроков свершения событий осуществляется после нахождения критического пути по принципу, представленному на рис. 4.2.

Рис. 4.2 Поздний срок свершения события

Раннее начало каждой работы равно раннему сроку свершения начального в данной работе события:

Раннее окончание каждой работы определяется как сумма фона раннего начала и продолжительности ожидаемого времени выполнения этой работы:

Позднее окончание каждой работы равно позднему сроку свершения конечного события в работе:

Позднее начало работы определяется как разница между сроком позднего окончания и ожидаемым временем выполнения этой работы:

На основании рассчитанных ранних и поздних сроков начала и окончания работ определяются резервы времени работы.

Различают понятия полного и свободного резервов времени.

Резерв времени события - это промежуток времени, на который может быть отсрочено свершение этого события, без нарушения критического пути:

Полный резерв времени работы - это максимальный период времени, на который можно увеличить продолжительность данной работы, не изменяя критического пути:

Важным свойством этого резерва является то, что он может быть распределен между работами, лежащими на следующем пути, т.е. он является резервом всего последующего пути.

Свободный резерв времени работы - это промежуток времени, на который может быть отодвинуто окончание данной работы, не изменяя ранних сроков начала последующих работ

Резервы времени работы позволяют маневрировать сроками начала и окончания работ, устанавливая наиболее благоприятные сроки выполнения работы с точки зрения рациональной загрузки ресурсов, выделяемых на достижение конечной цели. Резервами работ можно пользоваться также для выявления критического пути. Представляя цепную связь работ, он проходит по работам, не имеющим резервов.

Одними из важнейших операций при анализе рассчитанных параметров сетевого графика являются определение коэффициентов напряженности работ и вероятности свершения завершающего события в заданный срок.

Коэффициент напряженности работы характеризует относительную сложность соблюдения сроков выполнения работ на некритических путях:

где - продолжительность максимального пути, проходящего через работу ij;

Продолжительность критического пути;

Продолжительность отрезка максимального пути работы, совпадающего с критическим путем ij.

Контролировать правильность расчета сетевого графика необход и мо по параметрам полного резерва времени и коэффициента напряженн о сти. Причём резерв времени работ, лежащих на критическом пути всегда равен нулю, а к о эффициент напряженности работ равен единице.

Таблица 4.1. Картотека событий

№ события

Перечень событий

ТЗ получено

ТЗ проработано

Литература подобрана

Литература изучена

Математическая модель выбрана

Расчет характеристик привода сделан

Выбор типа и схемы привода сделан

Расчет конструктивных и обобщенных параметров проведен

Анализ влияния различных факторов на характеристики привода проведен

Техническая документация выпущена

Рабочие чертежи разработаны

Эскизный проект выпущен

Техническая документация выпущена и выдана в производство

Материалы заказаны

Материалы поставлены

Комплектующие изделий заказаны

Детали изготовлены и комплектующие изделия поставлены

ПИ выпущено и произведена сборка и настройка образца

Испытания произведены

ТП выпущено и произведена корректировка ТД

Принято решение о серийном выпуске

Таблица 4.2 Картотека работ

№ работы

Перечень работ

Продолжительность, дни

Затраты на выполнение работ, руб.

Выдача ТЗ

Подбор литературы

Изучение литературы

Фиктивная работа

Выбор мат. модели

Расчёт характеристик привода

Фиктивная работа

Выбор типа и схемы привода

Расчёт конструктивных и обобщённых параметров привода

Анализ влияния различных факторов на характеристики привода

Выпуск ТД

Разработка рабочих чертежей

Выпуск эскизного проекта

Выпуск ТД и выдача ее в производство

Заказ материалов

Поставка материалов

Подготовка производства

Заказ комплектующих изделий

Поставка комплектующих тизделий

Изготовление деталей

Сборка и настройка образца

Выпуск ПИ

Проведение испытаний

Корректировка технической документации

Выпуск технического проекта

Принятие решения о серийном выпуске

Расчёт сетевого графика проведён с применением ЭВМ. Результаты представлены в виде таблицы 1.

Из расчетов видим, что критический путь проходит через события:

Продолжительность критического пути 111.5 дней.

Расчёт вероятности наступления завершающего события в заданный срок совершенно необходим, когда установленный директивный срок оказывается меньше срока свершения завершающего события, рассчитанного по величине критического пути.

Вероятность свершения завершающего события в заданный срок можно определить по формуле:

где - значение дифференциальной функции нормального распределения вероятностей, называемой функцией Лапласа, определяют в зависимости от ее аргумента х по таблице, приведенной в приложении 1.

где - среднеквадратическое отклонение срока наступления завершающего события;

- продолжительность работы ij, лежащей на критическом пути;

n - число работ критического пути;

- среднее арифметическая для параметра.

Для величины имеются вполне определенные границы допустимого риска. При > 0.65 можно утверждать, что на работах критического пути имеются избыточные ресурсы, следовательно общая продолжительность работ может быть сокращена. При < 0.35 опасность срыва заданного срока наступления завершающего события настолько велика, что необходимо повторное планирование с перераспределением ресурсов, т.е. оптимизация сетевого графика.

Оптимизация сетевого графика в зависимости от полноты решаемых задач может быть разделена на частную и комплексную. Видами частной оптимизации являются: минимизация стоимости всего комплекса работ при заданном времени выполнения проекта, минимизация времени выполнения разработки при заданной ее стоимости. Комплексная оптимизация - это нахождение оптимума в соотношениях величин затрат и сроков выполнения проекта.

Проведением оптимизации сетевого графика стадия составления исходного плана заканчивается. Далее начинается стадия оперативного управления ходом работ, когда в службу сетевого планирования поступает с определенной периодичностью информация о фактическом ходе смоделированного процесса. Производятся перерасчеты графика и разрабатываются мероприятия по ликвидации возникших от него отклонений.

Таким образом, в целом сетевой график позволяет наиболее рационально построить план работы, установить строгую последовательность и очередность в выполнении всех необходимых операций и действий. С помощью сетевого графика можно с достаточной точностью определить сроки свершения каждого события и, следовательно, срок достижения результата - завершающего события; оптимизировать использование выделяемых ресурсов; организовать контроль, наблюдение и управление действиями ответственных исполнителей с помощью ЭВМ.

4.3 Выводы

1. Проведя расчёт параметров сетевого графика, мы видим, что при длине критического пути 111.5 дней затраты на комплекс работ составляют 18 338 рублей.

2. Проведя оптимизацию сетевого графика, исходя из минимума затрат, мы видим, что при той же длине критического пути затраты на комплекс работ составляют 18 213 рублей.

3. Проведя оптимизацию сетевого графика, исходя из минимума длины критического пути, при директивном сроке, длина критического пути составляет 103 дней, при затратах на комплекс работ 20 358 рублей.

4. Проведя комплексную оптимизацию, исходя из минимума затрат и минимума длины критического пути, при директивном сроке, видно, что длина критического пути оставляет 103 дня, при затратах на комплекс работ 20 358 рублей.

5. ОХРАНА ТРУДА

5.1 Введ ение

При проектировании ВДРП на работоспособность инженера влияет организация трудового процесса, метеорологические условия производст венной среды, шум, освещение производственного помещения, его температура и многое др у гое.

Безопасность труда обеспечивается соблюдением правил по техн ике безопасности, санитарных норм и правил. Также для обеспечения безопасности труда должны предъявляться требования к сооружениям, производственным зданиям, оборудованию. При этом необходимо обеспечивать защиту рабочих мест от воздействия опасных и вредных факторов, содержать рабочие места в строгом соответствии с санитарно-гигиеническими нормами.

В данной части дипломного проекта будут рассмотрены все вышеп е речисленные факторы, влияющие на здоровье и безопасность человека, и будут разработаны меры по предотвращению вредных и опасных факт о ров.

5.2 Анализ вредных и опасных факторов при расчёте и проектировании замкнутой системы ВДРП

Расчёт и проектирование - это работа с чертежами, с технической документацией, с расчётами, с ЭВМ. Инженеру приходится часами работать над чертежами, книгами, поэтому в помещении, где он работает должно быть освещение соответствующее санитарным нормам и правилам. Правильно спроектированное и выполненное освещение на предприятии обеспечивает возможность нормальной производственной деятельности. Сохранность зрения человека, состояние его центральной нервной системы и безопасность на производстве в значительной мере зависят от условий освещения.

При недостаточном освещении в помещении, где работает инженер, у работающего постепенно ухудшается зрение, а, следовательно, и его общее физическое состояние, и работоспособность.

Расчёт и проектирование замкнутой системы ВДРП осуществляется с применением персонального компьютера с соответствующим программным обеспечением. Эксплуатация ПЭВМ связана с воздействием на работающего таких вредных и опасных факторов, как повышенная температура окружающей среды, недостаток естественного освещения, недостаточная освещенность рабочей зоны, электрический ток, статическое электричество, шум, повышенный уровень электромагнитного, ультрафиолетового и инфракрасного излучений.

Работа инженеров-исследователей и конструкторов связана с воздействием таких психофизических факторов, как умственное перенапряжение, напряжение зрительных и слуховых анализаторов, монотонность труда, эмоциональные перегрузки.

Воздействие указанных неблагоприятных факторов приводит к снижению работоспособности, вызванной развивающимся утомлением. Появление и развитие утомления связано с изменениями, возникающими в процессе работы в центральной нервной системе, с тормозными процессами в коре головного мозга. Так при длительной работе за видеомонитором, у человека возникает повышенная утомляемость и головная боль. Длительное нахождение человека в зоне комбинированного воздействия различных неблагоприятных факторов может привести к профессиональным заболеваниям, например, ухудшение зрения, бессонница.

После разработки технологических факторов и технической документации изготавливают экспериментальный образец и производят испытания на испытательных стендах. При этом возникает опасность возникновения пожара или поражения электрическим током.

5.3 Меры по недопущению вредных и опасных факторов

Для предотвращения вредных и опасных факторов на предприятии при строительстве производственных зданий необходимо соблюдать все требовании санитарных норм и правил. Также необходимо регулярно производить и н структаж работников предприятия по технике безопасности, надо постоянно следить за электрооборудованием и за наличием противопожа р ных средств.

Подобные документы

    Проектирование исполнительного двигателя системы газового рулевого привода. Анализ применения пневматических и газовых исполнительных устройств. Построение принципиальной схемы рулевого тракта. Обзор функциональных элементов систем рулевого привода.

    курсовая работа , добавлен 20.06.2012

    Обоснование выбора структуры привода, составление его математической модели. Расчет конструктивных параметров, управляющего электромагнита и динамических характеристик привода, тепловой расчет конструкции. Технологический процесс сборки рулевой машины.

    дипломная работа , добавлен 10.09.2010

    Кинематический и энергетический расчет привода. Подбор электродвигателя, расчет открытой передачи. Проверочный расчет шпоночных соединений. Описание системы сборки, смазки и регулировки узлов привода. Проектирование опорной конструкции привода.

    курсовая работа , добавлен 06.04.2014

    Производители, описание конструкции, преимущества использования системы верхнего привода в буровых работах. Обоснование выбора кинематической схемы привода, проектирование валов редуктора. Укрупненный технологический процесс изготовления детали.

    дипломная работа , добавлен 18.04.2011

    Общие сведения об автомобиле. Проектирование рулевого управления, описание его назначения и основных требований. Обоснование выбора реечного управления и определение параметров рулевой трапеции. Расчет параметров зацепления механизма "шестерня-рейка".

    дипломная работа , добавлен 13.03.2011

    Классификация смесителей по принципу действия. Определение расчётной мощности двигателя. Описание порядка сборки и обслуживания привода. Конструктивный расчёт цепной передачи, шпоночных соединений. Рекомендации по выбору масла и смазки всех узлов привода.

    курсовая работа , добавлен 27.10.2014

    Расчёт энергосиловых и кинематических параметров привода. Передаточные числа по ступеням привода и частоты вращения валов. Расчёт конической передачи с круговым зубом. Проверка по контактным напряжениям. Расчёт валов, шпонок и подбор подшипников.

    курсовая работа , добавлен 09.01.2014

    Принцип действия привода шнекового питателя. Подбор электродвигателя, расчет цилиндрического редуктора. Алгоритм расчета клиноременной, цепной передачи. Рекомендации по выбору масла и смазки узлов привода. Сборка и обслуживание основных элементов привода.

    контрольная работа , добавлен 04.11.2012

    Разработка привода ленточного транспортера, состоящего из электродвигателя, клиноременной передачи и двухступенчатого цилиндрического зубчатого редуктора. Кинематический и силовой расчет привода. Форма и размеры деталей редуктора и плиты привода.

    курсовая работа , добавлен 18.12.2010

    Проектирование и расчет привода, зубчатой передачи и узла привода. Силовая схема привода. Проверочный расчет подшипников качения, промежуточного вала и шпоночных соединений. Выбор смазочных материалов. Построение допусков для соединений основных деталей.

Введение.

Глава 1. Аналитический обзор РП ЛА.

1.1 Состояние и перспективы развития РП ЛА.

1.2 Анализ конструктивно-компоновочных схем РП.

1.3 Анализ математических моделей электрогидравлических РП.

1.4 Актуальность исследования, цель и задачи работы.

Глава 2. Математическая модель РП с СГРМ.

2.1 Особенности математического моделирования СГРМ.

2.2 Влияние основных нелинейностей ЭГУ на характеристики РМ.

2.3 Нелинейная математическая модель РП.

2.4 Анализ результатов численного моделирования РП.

Глава 3. Повышение качества динамических характеристик системы рулевой привод-орган управления.93

3.1 Особенности эксплуатации РП и определение факторов, влияющих на показатели качества работы.

3.2 Имитационное моделирование СГУ в пакете Ansys CFX.Ill

3.3 Влияние жёсткости силовой проводки на характеристики РП.

Глава 4. Экспериментальные исследования РП ЛА.

4.1 Экспериментальный стенд для исследования РП ЛА.

4.2 Исследование влияния инерционной нагрузки и жесткости крепления СГРМ на динамические характеристики РП ЛА.

4.3 Методика расчёта РП с использованием имитационного моделирования.

4.4 Сравнительный анализ результатов численного моделирования и экспериментальных исследований РП ЛА.

Рекомендованный список диссертаций

  • Методологические основы совершенствования проектирования струйных гидравлических рулевых машин 2010 год, доктор технических наук Месропян, Арсен Владимирович

  • Струйные гидравлические рулевые машины с устройствами коррекции 2006 год, кандидат технических наук Арефьев, Константин Валерьевич

  • Методика расчета струйно-кавитационной гидравлической рулевой машины с использованием методов математического и физического моделирования 2010 год, кандидат технических наук Целищев, Дмитрий Владимирович

  • Идентификация струйных гидравлических рулевых машин 2000 год, кандидат технических наук Месропян, Арсен Владимирович

  • Моделирование и оптимизация гидромеханических систем мобильных машин и технологического оборудования 2008 год, доктор технических наук Рыбак, Александр Тимофеевич

Введение диссертации (часть автореферата) на тему «Улучшение динамических характеристик рулевого привода летательного аппарата на основе имитационного моделирования»

Усовершенствование летательных аппаратов (JIA) влечёт за собой повышение требований по надёжности, быстродействию и долговечности рулевых приводов (РП), работающих в жёстких условиях эксплуатации. Научные и производственные организации как за рубежом, так и в отечественной промышленности ведут исследования по совершенствованию РП и устройств, удовлетворяющих условиям их работы на JIA.

РП JIA представляет собой набор электрогидравлических и механических устройств, позволяющих с высоким быстродействием (время выхода на режим составляет менее 0.6 с.) и точностью (величина перерегулирования составляет не более 10%) развивать требуемые характеристики. Функционирование РП J1A происходит в достаточно сложных условиях эксплуатации: воздействие вибрационных нагрузок, резкие воздействия при отстыковке ступеней ракеты, нелинейные характеристики сил трения тяг и качалок и сил инерции поворотного управляющего сопла (ПУС) с постоянно изменяющимся шарнирным моментом, сложные климатические условия и проблемы длительного хранения.

Максимально возможные тактико-технические характеристики беспилотных JIA достигаются, в том числе, благодаря многочисленным конструкторским и исследовательским работам, к которым можно отнести проведение стендовых испытаний и имитационное моделирование РП. Имитационное моделирование РП с применением современных пакетов математического моделирования и C/iD-проектирования позволяет снизить временные и финансовые затраты при разработке и последующей доводке РП беспилотных JIA, исключая метод проб и ошибок. Проведение экспериментальных исследований позволяет выполнить анализ соответствия результатов численного моделирования на адекватность реальному объекту.

В данной работе разработана имитационная модель РП JIA по результатам обработки и обобщения экспериментальных данных, полученных в ОАО «Государственный ракетный центр им. академика В.П. Макеева» и в учебно-научном инновационном центре «Гидропневмоавтоматика» на кафедре прикладной гидромеханики Уфимского государственного авиационного технического университета.

Цель и задачи работы

Улучшение динамических характеристик рулевого привода летательного аппарата на основе имитационного моделирования.

1. Разработка математической модели РП и анализ результатов численного моделирования;

2. Проведение экспериментальных исследований РП и сравнение их результатов с результатами численного моделирования;

4. Разработка методики расчёта с применением имитационной модели РП ЛА.

Методы исследования базируются на фундаментальных методах математического моделирования физических процессов, происходящих в РП JIA в процессе эксплуатации, методах статистического анализа экспериментальных характеристик РП и методах вычислительного эксперимента.

Научная новизна основных результатов работы

Впервые в математической модели РП JIA со струйным гидравлическим усилителем (СГУ) предложено использовать нелинейную модель люфта в механической передаче и эмпирическую модель гистерезиса характеристики управления электромеханического преобразователя, что позволило повысить достоверность результатов численного моделирования.

Впервые была решена обратная задача по влиянию нежёсткости силовой проводки на изменение гидродинамического момента обратных струй, действующих на струйную трубку, вследствие чего уменьшается зона устойчивости РП. В результате проведённых исследований были получены рекомендации по снижению гидродинамического момента обратной струи.

Впервые был определён диапазон изменения коэффициента передачи РП ДА, при котором наблюдается его устойчивая работа. Анализ результатов численного моделирования и результатов экспериментальных исследований позволили выявить зону устойчивости РП ДА как функцию от жёсткости силовой проводки и параметров РМ.

Практическая значимость заключается в том, что разработанная методика расчёта РП ЛА позволяет исследовать устойчивость, точность и быстродействие с учётом действующих на него эксплуатационных нагрузок. Комплекс прикладных программ, выполненных в математическом пакете, позволяет провести численное исследование имитационной модели рулевого привода и сравнить полученные результаты с экспериментальными данными. На защиту выносятся

1. Математическая модель РП J1A;

2. Результаты численного исследования имитационной модели РП JIA;

3. Результаты экспериментальных исследований РП JIA;

4. Новая схема струйного гидравлического распределителя (СГР), позволяющая увеличить надёжность и быстродействие РП ЛА за счёт снижения гидродинамического воздействия обратной струи на струйную трубку.

Апробация работы

Основные теоретические положения и практические результаты работы докладывались и обсуждались на всероссийской молодёжной научнотехнической конференции «Проблемы современного машиностроения» (г. Уфа 2004 г.), на международной конференции «Глобальный научный потенциал» (г. Тамбов 2006 г.), на Российской научно-технической конференции, посвященной 80-летию со дня рождения чл.-кор. РАН, профессора P.P. Мавлютова «Мавлютовские чтения» (г. Уфа 2006 г.), на конкурсе молодых специалистов авиационно-космической отрасли (Москва, ТПП РФ, комитет по развитию авиационно-космической техники, 2008).

Основанием для выполнения работы является план исследований госбюджетной НИР «Исследование теплофизических и гидродинамических процессов и разработка теории перспективных энергонапряженных двигателей и энергетических установок» (2008-2009 гг.), № 01200802934, Государственные контракты № П317 от 28.07.2009 «Разработка методов расчета и совершенствование рулевых приводов ракетных двигателей» и № П934 от 20.08.2009* «Электрогидравлическая система управления регулируемой двигательной установкой твёрдого топлива многократного включения» по направлению «Ракетостроение» федеральной целевой1 программы «Научные и педагогические кадры инновационной России» на 2009-2013 годы.

Публикации

Основные результаты исследований по теме диссертации представлены в 16 публикациях, в том числе в 3 статьях в рекомендованных ВАК изданиях. представлен анализ опубликованных работ по исследованию РП JIA, методов их расчёта и проектирования.

Рассматриваются опубликованные теоретические исследования и экспериментальные исследования авторов А.И: Баженова, Н.С. Гамынина, С.А. Ермакова, И.С. Шумилова, В.М. Фомичёва, В.А. Корнилова,. В.В. Малышева, В.А. Полковникова, В.А. Чащина. Анализ результатов исследований позволил доработать линейную математическую модель РМ, которая используется в РП J1A. На отечественных летательных аппаратах третьего поколения в состав РП входят РМ, разработанные в ОАО «Государственный ракетный центр им. академика В.П. Макеева». Разработка и испытания РП, проведённые специалистами ракетного центра, подтвердили, что РМ, отвечающей всем параметрам работы, является струйная гидравлическая рулевая машина (СГРМ).

Научно-технический обзор исследований по РП И.С. Шумилова, Д.Н. Попова, В.Ф. Казмиренко, В.И. Гониодского, А.С. Кочергина, Н.Г. Сосновского, М.В. Сиухина, В.Я. Бочарова позволил разработать методику расчёта и методику имитационного моделирования РП JIA. Представленные частотные характеристики РП и зависимости, которые учитывают жёсткость силовой проводки, жёсткость крепления гидроцилиндра, переменный модуль объёмной упругости рабочей жидкости, позволили доработать линейную математическую модель РП.

На протяжении развития военной авиации колоссальную роль в обеспечении надёжности, долговечности и.быстродействия оказали исследования, основанные на инженерных методах. В работах таких авторов, как В.М. Апасенко, Р.А. Рухадзе, В.И. Варфоломеев, М.И. Копытов, И.М. Гладков, И.Х. Фархутдинов, представлены различные конструктивные схемы РП, каждая из которых обладает своими преимуществами и недостатками. Конструктивные схемы позволяют определять кинематическую схему и расчётную схему РП.

В работах учёных кафедры «Прикладная гидромеханика» Уфимского государственного авиационного технического университета таких авторов, как Э.Г. Гимранов, В.А. Целищев, Р.А. Сунарчин, А.В. Месропян, A.M. Русак, а также в трудах зарубежных авторов: М. Nordin, Gutman Per-Olof, Hong-guang Li, Guang Meng, F. Ikhouane, J. E. Hurtado, J. Rodellar разработаны нелинейные математические модели электрогидравлических и механических устройств, работающих в жёстких эксплуатационных условиях.

Проведённый аналитический обзор показывает, что зачастую метод проб и ошибок при проектировании РП JIA является не только одним из самых эффективных методов, но и дорогостоящим методом, а линейные математические модели не адекватно описывают реальный объект, особенно при нагруженном режиме работы РП. Разработанные нелинейные математические модели позволяют приблизить результаты численного моделирования к физическим процессам, которые протекают во время эксплуатации РП JIA.

Во второй главе представлена математическая модель РП JIA. РП с СГРМ, который используется в настоящее время в ракетных двигателях JIA, отвечает всем требованиям по скоростным и силовым характеристикам. При работе РП JIA, включающие в свой состав СГРМ, протекают сложные физические процессы. Так, в струйном каскаде возникают сложные гидродинамические процессы, которые приводят к эжекции рабочей жидкости, к негативному воздействию гидродинамической обратной струи, к гистерезису в характеристике управления «ЭМП - струйная трубка» и др. В механической передаче РП можно выделить такие нелинейности как люфт, сила сухого трения, нежёсткость силовой проводки, которые отрицательно влияют на показатели динамических характеристик (точность, устойчивость и управляемость). Разработанная математическая модель РП JIA при численном моделировании позволяет получать результаты с высокой степенью адекватности реальному объекту.

В третьей главе представлены вопросы повышения качества динамических характеристик РП JIA. С помощью численного моделирования разработанной" математической модели РП" JIA можно выполнить анализ влияния определённых параметров, к которым можно отнести инерционную нагрузку, жёсткость силовой проводки, величину зазора люфта в механической передаче, гистерезис в характеристики управления «ЭМП - струйная трубка» и др. При этом рассматриваются показатели качества динамических характеристик: перерегулирование, время регулирования, время достижения первого максимума и амплитуда колебаний.

Использование современных пакетов Ansys CFX и Solid Works позволяет проводить имитационное моделирование РП, используя при этом метод конечных элементов, основную техническую базу по используемым материалам в современном машиностроении и математическую модель течения несжимаемой жидкости в проточной части СГРМ. Приведены результаты анализа теоретических и экспериментальных исследований и предложена функциональная схема СГРМ, позволяющая уменьшить зону нечувствительности в характеристике управления за счёт снижения гидродинамического воздействия обратной струи на струйную трубку.

В четвёртой главе представлен анализ результатов теоретических и экспериментальных исследований РП JIA. Для проведения экспериментальных исследований в ходе инновационного проекта в результате совместной деятельности УГАТУ и ОАО «ГРЦ им. академика В.П. Макеева» был разработан стенд по исследованию статических и динамических характеристик РП JIA. Стенд позволяет получать данные таких характеристик как расходно-перепадная характеристика СГРМ, перемещение струйной трубки, поршня РМ и инерционной нагрузки в режиме реального времени, а также частотных характеристик при различных условиях работы РП. В результате доработки математической модели погрешность расчётов численного моделирования и экспериментальных исследований составляет не больше 5%, что приемлемо для инженерной методики расчёта РП JIA.

Работа выполнена под руководством д.т.н., профессора В.А. Целищева и к.т.н., доцента А.В. Месропяна. Результаты, изложенные в данной работе и выносимые на защиту, получены лично автором диссертации.

Похожие диссертационные работы по специальности «Гидравлические машины и гидропневмоагрегаты», 05.04.13 шифр ВАК

  • Методы расчета газотермодинамики сверхзвуковых турбулентных затопленных струй и их взаимодействия с преградой 2009 год, кандидат физико-математических наук Сафронов, Александр Викторович

  • Модернизация двухдроссельного электрогидравлического усилителя для системы управления вектором тяги 2010 год, кандидат технических наук Белоногов, Олег Борисович

  • Особенности гидродинамики проточной части гидравлических струйных усилителей и их влияние на выходные характеристики 1984 год, кандидат технических наук Бадах, Валерий Николаевич

  • Использование вибрационных испытаний в контроле технического состояния самолётов 2009 год, кандидат технических наук Бобрышев, Александр Петрович

  • Прогнозирование параметров низкочастотного гидроакустического излучателя 1999 год, кандидат технических наук Квашнин, Александр Иванович

Заключение диссертации по теме «Гидравлические машины и гидропневмоагрегаты», Галлямов, Шамиль Рашитович

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

РП JIA постоянно совершенствуются по конструкции и функциональным возможностям. Усовершенствование JIA ведёт за собой повышение требований по надёжности, быстродействию и долговечности РП, находящихся в жёстких условиях эксплуатации. Снижение себестоимости при разработке и последующей доводке до требуемых характеристик РП JIA достигается использованием современных средств автоматизированного проектирования и моделирования, с применением многочисленных исследований по данной тематике. Работа РП происходит в достаточно сложных условиях: воздействие вибрационных нагрузок, резкие воздействия статической нагрузки при отстыковки ступеней ракеты, воздействие сил трения тяг и качалок и сил инерции ПУС с постоянно изменяющимся шарнирным моментом. Поэтому особое внимание, при его проектировании" уделяется проектированию жёсткости силовой проводки, проектированию РМ и проведению испытаний РП с максимально приближенными имитационными условиями эксплуатации. Жёсткость силовой проводки РП значительно влияет на его характеристики.

На сегодняшний день существуют различные методики расчёта и проектирования РП JIA, которые основаны на численном решении линейных и нелинейных уравнений, описывающих различные физические процессы. Необходимо использовать такую методику при расчёте РП, которая позволяет учитывать все возможные явления, протекающие во время эксплуатации РП. Такими явлениями могут являться люфт в механической проводке, зона нечувствительности в характеристике управления, нежёсткость крепления корпуса РМ, нежёсткость силовой проводки РП JIA, гидродинамическое воздействие на подвижные элементы струйного каскада и др.

Для проведения численных экспериментов РП ЛА была разработана математическая модель, которая позволяет проводить численные эксперименты РП на начальном этапе разработки. В отличие от существующих математических моделей в разработанной математической модели РП ЛА дополнительно были учтены нелинейности, которые существенно влияют на его характеристики. К таким нелинейностям относятся люфт в механической передаче, гистерезис в характеристике управления ЭМП СГРМ, зависимость гидродинамического момента обратной струи от перемещения струйной трубки, действующего на струйную трубку СГРМ.

При численном моделировании с помощью разработанной математической модели РП ЛА был выполнен анализ влияния некоторых факторов на показатели качества динамических характеристик, среди которых можно выделить перерегулирование, время регулирования, максимальное перемещение поршня и инерционной нагрузки и др. Исследования показали, что при изменении жёсткости силовой проводки с, =104.106 Н/м величина перерегулирования уменьшается на 50%, а время регулирования tp при жёсткости меньше чем с, = 106 Н/м превышает допустимые значения (tp < 0.6.0.7 с). Следовательно, для рассматриваемого РП ЛА с однокаскадной СГРМ не допускается, чтобы жёсткость силовой проводки была меньше чем с. = 106 Н/м. Анализ результатов численного моделирования выявил значительное влияние эмпирического коэффициента магнитного гистерезиса Р на величину перерегулирования о. Коэффициент р определяет величину ширины петли гистерезиса. Так в случае, когда выполняется условие Р<840Н/(Ам), величина перерегулирования а достигает 100%, что не допустимо для РП ЛА. В результате проведённых исследований было выявлено, что данного РП JIA величина (3 может изменяться в пределах 1500 Н/(Ам) - 2000 НУ(Ам).

При исследовании характеристик РП JIA была решена обратная задача о влиянии нежёсткости силовой проводки РП на изменение физических процессов, протекающих при истечении высоконапорной струи из конусного насадка СГУ. При изменении жёсткости силовой проводки РП возникает пульсация давлений в полостях ГЦ РМ, что приводит к изменению г/д момента, действующего на струйную трубку.

С целью определения г/д момента, который отрицательно влияет на характеристику управления, было выполнено имитационное моделирование СГУ в пакете Ansys CFX. В результате проведённых исследований была получена зависимость изменения г/д момента от перемещения струйной трубки для однокаскадной РМ, а также было проведено исследование по влиянию г/д. момента на струйную трубку на динамические характеристики. Изменение г/д момента обратной струи происходит не пропорционально смещению струйной трубки РМ. При отсутствии г/д воздействия обратной струи на струйную трубку при частоте колебаний 15 Гц наблюдается устойчивая работа РП JIA. В данном случае коэффициент передачи РП составляет меньше 1.5 (у <1.5). В случае г/д воздействия запаздывание инерционной нагрузки относительно поршня ГЦ РМ происходит при значениях сх = 6 107 Н/м и Л = 1.2 10-4 м. С целью снижения г/д момента обратной струи была разработана функциональная схема СГУ, доработанная на основе существующего изобретения, которая позволяет компенсировать г/д момент, действующий на струйную трубку, и уменьшить зону нечувствительности.

В ходе совместной работы сотрудников ОАО «ГРЦ им. В.П. Макеева» и сотрудников кафедры прикладной гидромеханики УГАТУ был разработан экспериментальный стенд для исследования статических и динамических характеристик РП JIA. Экспериментальный стенд позволяет проводить исследовании с имитацией постоянной позиционной нагрузки, которая может изменяться от 0 до 5000 Н и инерционной нагрузки, которая может иметь значения 0, 45 и 90 кг. Разработанная математическая модель РП JIA адекватна реальному объекту, так как погрешность сравнения результатов численного моделирования и результатов экспериментальных исследований составляет не больше 5%;

При анализе результатов численного и экспериментального исследований были получены такие характеристики как расходно-перепадная характеристика РМ, характеристика зоны нечувствительности при воздействии на исполнительный механизм позиционной нагрузки и при её отсутствии, характеристика изменения коэффициента расхода при разных положениях струйной трубки, АФЧХ поршня РМ и инерционной нагрузки. Анализ сравнения результатов численного моделирования и результатов экспериментальных исследований позволил разработать методику расчёта РП с однокаскадной СГРМ. Разработанная методика позволяет получить характеристики при расчёте РП на начальном этапе проектирования. Разработчик может по выбору использовать разработанную математическую модель РП JIA: использовать её как чёрный ящик не изменяя структуру или вносить некоторые изменения при численном исследовании РП ЛА. Так, существует возможность вносить изменения в расходно-перепадную характеристику РМ, изменять используемые эмпирические коэффициенты, менять режим нагружения РП ЛА.

Список литературы диссертационного исследования кандидат технических наук Галлямов, Шамиль Рашитович, 2009 год

1. ANSYS CFX-Solver Theory Guide. ANSYS CFX Release И.О.© 1996-2006 AN SYS Europe, Ltd.;

2. F. Ikhonane, J. E. Hurtado, J. Rode liar. On the Hysteretic Bouc-Wen Model. Nonlinear Dynamics 42: 63-78, 2005;

3. F. Ikhouane, J. E. Hurtado, J. Rodellar. Variation of the hysteresis loop with the Bouc-Wen model parameters. Nonlinear Dyn 48:361-380,.2007;

4. Hong-guang Li, Guang Meng. Nonlinear dynamics of a SDOF oscillator with Bouc-Wen hysteresis. 2006 Elsevier Science Ltd: Chaos, Solitons and Fractals 337-343, 2002 (www.elsevier.com/locate/automatica);

5. M. Nordin, Per-Olof Gutman. Controlling mechanical systems with backlasha survey, wvw.elsevier.com/locate/automatica. 2002 r;

6. Nordin M., Gutman Per-Olof Controlling mechanical systems with backlasha survey. 2002 Elsevier Science Ltd: Automatica 1633 - 1649, 2002 (www. elsevier. com/locate/automatica);

7. R. V. Lapshin, "Analytical model for the approximation of hysteresis loop and its application to th"e scanning tunneling microscope", Review of Scientific Instruments, volume 66, number 9,pages 4718-4730, 1995;

8. Solid Works Flow Simulation 2009. Technical Reference, 2009.

9. Forsythe, G.E.; Malcolm, M.A.; and Moler, C.B. Computer Methods for Mathematical Computations. New Jersey: Prentice Hall, 1977;

10. Абаринова И.А., Пильгунов B.H. Испытания гидравлических устройств автоматики и приводов. М.; МГТУ, 1990г. п.л.;

11. Автоматизированное проектирование следящих приводов и их элементов/ Под ред. В.Ф. Казмиренко/ Энергоатомиздат,1984;

12. Андреев А.Б. Использование первичных элементов пакета ADAMS для создания виртуальных моделей механических систем и механизмов.

13. Часть I Метод, указан, для пользователей по КНИРС. 5,2 п.л. 2000г. М. МГТУ-ОАО Туполев;

14. Апасенко В.М., Рухадзе Р.А. Морские ракетно-ядерные системы вооружения (прошлое, настоящее, будущее). - М.: Муниципальное образование «Выхино-Жулебино», 2003.- 328 е.;

15. Бадягин А.А., Егер С.М., Мишин В.Ф., Склянский Ф.И., Фомин A.M. «Машиностроение», 1972, стр. 516;

16. Баженов А.И. Рулевые гидроприводы со струйно-дроссельным регулированием: Учебное пособие, Москва, МАИ, 2002;

17. Бесекерский В.А. Теория систем автоматического управления/ В.А. Бесекерский, Е.П. Попов. М.: «Профессия», 2004, 747 е.;

18. Боровин Т.К., Попов Д.Н., Хван B.JL Математическое моделирование и оптимизация гидросистем. М.; МГТУ, 1995г.; 5,25 п.л.;

19. Бочаров В.Я., Шумилов И.С. Системы управления самолётов. Энциклопедия «Машиностроение». - М.: Машиностроение, 2004 г. Том IV-21. Книга 2;

20. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся вузов. 13-е изд., исправленное. - М.: Наука, Гл. ред. физ.-мат. лит., 1986. - 544 е.;

21. Варфоломеев В.И., Копытов М.И. Проектирование и испытания баллистических ракет. - М.: Воениздат, 1969. - 491 е.;

22. Веденский В.А., Казмиренко В.Ф., Лесков А.Г. Системы следящих приводов. Монография. М.: Энергоатомиздат, 1993 г. 18 п.л.;

23. Власов К.П. Теория автоматического управления/ К.П. Власов, А.С. Анашкин. С.-Сб.: Санкт-Петербургский горный институт, 2003, 103 е.;

24. Воронов А.А. Основы теории автоматического управления. М. - JL: Энергия, 1965, 4.1,423 е., 1966, 4.2, 372 е., 1970, Ч.З, 328 е.;

25. Волков В.Т., Ягодников Д.А. Исследование и стендовая отработка ракетных двигателей на твёрдом топливе. - М.: Изд.- во МГТУ им. Н.Э. Баумана, 2007. - 296 е.: ил.;

26. Высокоточные системы управления и приводы для вооружения и военной техники/ Под ред. СолунинаВ.Л. Изд-во МГТУ. М.1999. Гурский Б.Г., Казмиренко В.Ф., Лавров А.А. и др.;

27. Галлямов Ш.Р. Особенности проверки адекватности динамических характеристик струйных гидравлических рулевых машин. / Галлямов Ш.Р. // Наука-Производству. НИИТ. г. Уфа, 2007 г. С. 70-74.;

28. Галлямов Ш.Р., Месропян А.В. Математическое моделированиедвухкаскадного электрогидроусилителя / Галлямов Ш.Р., Месропян

29. А.В. // Проблемы современного машиностроения: Тезисы докладов всероссийской молодёжной научно-технической конференции 22-23 декабря 2004 г.- Уфа: УГАТУ, 2004. 180с. С.38;

30. Галлямов Ш.Р., Месропян А.В. Экспериментальные исследования рулевых машин / Галлямов Ш.Р., Месропян А.В. // Гидропневмоавтоматика и гидропривод. -2005 г: сборник научных трудов: в 2 т. Т1 .-Ковров: КГТА, 2006. -326 с. С. 212;

31. Галлямов Ш.Р., Петров П.В., Широкова К.А. Численное моделирование струйной гидравлической рулевой машины. / Галлямов Ш.Р., Петров П.В., Широкова К.А. // Наука-Производству. НИИТ, 2007 г. С. 60-70.;

32. Галлямов Ш.Р., Целищев В.А. Анализ рабочих процессов в высоконапорном струйном элементе с помощью программного комплекса FLOWVISION. / Галлямов Ш.Р., Целищев В.А. // Вопросы теории и расчёта тепловых двигателей, г. Уфа, 2008 г. с. 104-112.;

33. Галлямов Ш.Р., Широкова К.А. Использование идентификации при проектировании СГРМ. / Галлямов Ш.Р., Широкова К.А. // Глобальный научный потенциал. Заочная международная конференция: сб. тезисов докладов. Тамбов: ТГТУ; 2006. - 54 с.-56 е.;

34. Галлямов Ш.Р., Широкова К.А., Целищев В.А., Целищев Д.В. Исследование гидравлического рулевого привода летательного аппарата/ Галлямов Ш.Р., Широкова К.А., Целищев В.А., Целищев Д.В. // Вестник УГАТУ, Т.11, №2 (29) г. Уфа, 2008 г., стр. 56-74.;

35. Галлямов Ш.Р., Широкова К.А., Целищев В.А., Целищев Д.В. Численное моделирование потоков в струйно-золотниковом гидроусилителе/ Галлямов Ш.Р., Широкова К.А., Целищев В.А., Целищев Д.В.// Вестник УГАТУ, Т.11, №2 (29) г. Уфа, 2008 г., стр. 5560;

36. Гамынин, Н.С. Динамика быстродействующего гидравлического привода: Н.С. Гамынин, Ю. К. Жданов, A.JI. Климашин.- М. : Машиностроение, 1979 .- 80с.;

37. Гидравлические приводы летательных аппаратов./ Н.С. Гамынин, В.И. Карев, A.M. Потапов, A.M. Селиванов - М.: Машиностроение, 1992, 368 е.;

38. Гимранов Э.Г., Русак A.M., Целищев В.А. Электрогидравлический следящий привод: Учебное пособие. Уфа: изд. Уфимского государственного авиационного технического университета, 1984. - 92 е.;

39. Гладков И.М., Лалабеков В.И., Мухаммедов B.C., Шмачков Е.А. Массовые характеристики исполнительных устройств систем управления баллистических твёрдотопливных ракет и космических летательных аппаратов. М.: НТЦ «Информатика», 1996. - 168 е.;

40. Гониодский В.И., Кочергин А.С., Шумилов И.С. Системы управления рулями самолета. Ч. 1. Структура систем управления рулями самолетов. М.; МГТУ, 1992г. 3,0 пл.;

41. Гониодский В.И., Склянский Ф.И., Шумилов И.С. Привод рулевых поверхностей самолётов.- М., Машиностроение, 1974. - 317 е.;

42. Гониодский В.И., Шумилов И.С. Характеристики гидромеханических систем управления современными самолетами. Учебное пособие по курсу "Гидромеханические системы управления самолетом". 2,25 п.л., изд-во МГТУ, 1999 г.;

43. Гребёнкин В.И., Кузнецов Н.П., Черепов В.И. Силовые характеристики маршевых твёрдотопливных двигательных установок и двигателей специального назначения. Ижевск: Изд.-во ИжГТУ, 2003. - 356 е.;

44. Густомясов А.Н., Маландин ПО. Построение диагностических моделей гидроприводов. Методические указания. М. МГТУ, 1993 г. 1,5 п.л.;

45. Дьяконов В.П. Maple 9 в математике, физике и образовании. М.: СОЛОН-Пресс. 2004. 688 стр.;

46. Ермаков С.А., Карев В.И., Селиванов A.M. Проектирование корректирующих устройств и электрогидравлических усилителей следящих гидроприводов ДА: Учебное пособие, Москва, МАИ, 1990;

47. Ермаков С.А., Константинов С.В., Редько П.Г. Резервирование систем рулевых приводов летательных аппаратов: Учебное пособие, Москва, МАИ, 2002;

48. Ерохин Б.Т. Теоретические основы проектирования РДТТ. - Машиностроение, 1982. - 206 е.;

49. Иващенко Н.Н. Автоматическое регулирование. Теория и элементы систем. М.: Машиностроение, 1973. 606с.;

50. Испытания жидкостных ракетных двигателей. Под ред. В.З. Левина. - М.: Машиностроение, 1981. 199 е.;

51. Исследование ракетных двигателей на жидком топливе. Под ред. В.А. Ильинского. М.: Машиностроение, 1985. - 208 е.;

52. Казмиренко В.Ф., Ковальчук А. К. Электрические машины и преобразователи сигналов для автоматизированных гидроприводов. Учебное пособие. М.: Радио и связь., 1998г, 5 п.л.;

53. Карпенко А.В., Уткин А.Ф., Попов А.Д. Отечественные стратегические ракетные комплексы. - СПб.: Невский бастион Гангут, 1999. - 288 е.;

54. Конструкция и отработка РДТТ/ A.M. Винницкий, В.Т. Волков, С.В. Холодилов; Под ред. A.M. Винницкого. М.: Машиностроение, 1980. -230 е.;

55. Конструкция ракетных двигателей на твёрдом топливе. Под общ. ред. чл. корр. Российской академии наук, д-ра технических наук, проф. JI.H. Лаврова-М.: Машиностроение, 1993. - 215 е.;

56. Копылов И.П. Электромеханические преобразователи энергии. - М.: Энергия, 1973. -400 е.;

57. Корнилов В.А. Газовые исполнительные устройства. Основы автоматики и привода летательных аппаратов: Учебное пособие, Москва, МАИ, 1991;

58. Корнилов В.А. Основы автоматики и привода летательных аппаратов: Учебное пособие, Москва, МАИ, 1991;

59. Краснов Н.Ф., Кошевой В.Н. Управление и стабилизация в аэродинамике: Учеб. пособие для втузов/Под ред. Н.Ф. Краснова. - М.: Высш. Школа, 1978. 480 е.;

60. М.А. Красносельский, А.В.Покровский. Системы с гистерезисом М., Наука, Главная редакция физико-математической литературы, 1983. -272 стр.;

61. Крымов Б.Г. Исполнительные устройства систем управления летательными аппаратами: Учеб. пособие для студентов высших технических учеб. заведений / Б.Г. Крымов, JT.B. Рабинович, В.Г. Стеблецов. М.: Машиностроение, 1987. - 264 е.: ил.;

62. Лукас В.А. Теория автоматического управления. М.: Недра, 1990. 416 е.;

63. Малышев В.В., Кочеткова В.И., Карп К.А. Системы управления ракет-носителей: Учебное пособие, Москва, МАИ, 2000;

64. Математические основы теории автоматического регулирования / под ред. Б.К. Чемоданова. М.: Высшая школа, 1971. 807 е.;

65. Месропян А.В., Целищев В.А. Расчёт статических характеристик струйных гидравлических рулевых машин: Учебное пособие/ А.В. Месропян, В.А. Целищев; Уфимский государственный авиационный технический университет. - Уфа, 2003. 76 е.;

66. Месропян А.В., Целищев В.А. Электрогидравлический следящий привод. Учебное пособие. Уфимский государственный авиационный технический университет. - Уфа: УГАТУ, 2004. - 65 е.;

67. Мирошник И.В. Теория автоматического управления. Нелинейные и оптимальные системы. СПб.: Питер, 2006. - 272 е.: ил.;

68. Михайлов B.C. Теория управления. Учебное пособие для ВУЗов. Киев: Высшая школа, 1988. 309с.;

69. Низкотемпературные твердотопливные газогенераторы: Методы расчёта рабочих процессов, экспериментальные исследования/ О.В. Валеева, С.Д. Ваулин, С.Г. Ковкин, В.И. Феофилактов - Миасс: Издательство ГРЦ «КБ имени академика В.П. Макеева», 1997. 268 е.: ил.

70. Николаев Ю.М., Соломонов Ю.С. Инженерное проектирование управляемых баллистических ракет с РДТТ. М.: Воениздат, 1979. - 240 е.;

71. Основы теории автоматического управления ракетными двигательными установками/ А.И. Бабкин, С.И. Белов, Н.Б. Рутовский и др. М.: Машиностроение, 1986. - 456 е.;

72. Петровичев В.И. Расчет не следящего гидропривода самолета: Учебное пособие. Москва, МАИ, 2001;

73. Полковников В.А Параметрический синтез исполнительных механизмов гидравлических приводов систем управления летательных аппаратов: Учебное пособие, Москва, МАИ, 2001;

74. Полковников В.А. Электрические, гидравлические и пневматические приводы летательных аппаратов и их предельные динамические возможности: Москва, МАИ, 2002;

75. Попов Д.Н. Динамика и регулирование гидропневмосистем. 4.2, Методические указания. М.; МВТУ, 1979г. п.л.;

76. Попов Д.Н. Механика гидро-и пневмоприводов. Учебник. М., Изд-во МГТУ им. Н.Э. Баумана, 2001г.,20 п.л.;

77. Попов Д.Н. Расчет и проектирование следящего электрогидропривода с дроссельным регулированием. М.; МГТУ, 1990г. 1,75 п.л.;

78. Попов Д.Н. Схемы и конструкции электрогидравлических приводов. Учебное пособие. М.; 1985г.2,25 п.л.;

79. Попов Д.Н., Сосновский Н.Г., Сиухин М.В. Экспериментальное определение характеристик гидравлических приводов. Изд-во МГТУ им.Н.Э.Баумана, 2002 г.;

80. Попов Е.П. Теория линейных систем автоматического регулирования и управления. М.: Наука, 1989. 496 е.;

81. Проектирование следящих систем с помощью ЭВМ/ Под ред. B.C. Медведева/ Верещагин А.Ф., Казмиренко В.Ф., Медведев B.C. и др. Машиностроение, 1979 г.;

82. Прочность, устойчивость, колебания. Справочник в трёх томах. Том 3. Под ред. д-ра техн. наук И.А. Биргера и чл.-корр. АН Я.Г. Пановко. Машиностроение, 1988 г.

83. Разинцев В.И. Электрогидравлические усилители мощности. - М.: Машиностроение, 1980. 120 е., ил.;

84. Рябинин М.В Гидравлический демпфер. Изобретение № 2000100564/28(000785) от 12.01.2000 г.;

85. Рябинин М.В, А.А. Головин, Ю.В. Костиков, А.Б. Красовский, В.А. Никоноров. Динамика механизмов. Уч. пособие по курсу "Теория механизмов и машин". Из-во МГТУ им. Н.Э.Баумана, 2001 г.;

86. Семенов С.Е. Электромеханические преобразователи электрогидравлических следящих приводов. МГТУ им. Н.Э.Баумана, 1998 г.;

87. Синюков A.M. и др. Баллистическая ракета на твёрдом топливе. - М.: Воениздат, 1972.-511 е.;

88. Сипайлов Г.С.,Лоос А.В. Математическое моделирование электрических машин. -М.: Высшая школа,1980. -176 е.;

89. Смирнова В.И. Основы проектирования и расчёта следящих систем: Учебник для техникумов/ В.И. Смирнова, Ю.А. Петров, В.И. Разинцев. М.: Машиностроение, 1983. - 295 е., ил.;

90. Соколов А.А., Башилов А.С. Гидрокомплекс орбитального корабля «Буран». Москва, МАИ, 2006;

91. Солодовников В.В. Основы теории и элементы систем автоматического регулирования / В.В. Солодовников, В.Н. Плотников, А.В. Яковлев. М.: Машиностроение, 1985. 536 е.;

92. Труды МВТУ 244. Исследование и расчет струйных элементов и цепей систем автоматического регулирования. М.; МГТУ, 1977г. п.л.;

93. Труды МВТУ №244. Исследование и расчет струйных элементов и цепей систем автоматического регулирования. М.; МВТУ, 1977г. п.л.;

94. Управление вектором тяги и теплообмен в ракетных двигателях на твёрдом топливе/Н.М. Беляев, В.М. Ковтуненко, Ф.И. Кондратенко и др.; под ред. В.М. Ковтуненко // М.: Машиностроение. 1968. - 198 е.;

95. Фахрутдинов И.Х. Ракетные двигатели твёрдого топлива. М.: Машиностроение, 1981. -223 е.;

96. Фахрутдинов И.Х., Котельников А.В. Конструкция и проектирование ракетных двигателей твёрдого топлива: Учебник для машиностроительных вузов. - М.: Машиностроение, 1987. - 328 е.;

97. Филипс Ч., Харбор Р. Системы управления с обратной связью. М.: Лаборатория Базовых знаний, 2001 -616с.: ил.;

98. Фомичев В.М., Жарков М.Н. Испытание электрогидравлического усилителя мощности. М.; МГТУ, 1992г. 2,0 п.л.;

99. Целищев В.А. Определение коэффициентов восстановления давления и расхода в струйной электрогидравлической рулевой машине//Сб. трудов VII Всероссийской НТК. ОКБ «Темп», 26-29 октября, 1998 г. - с. 57-61;

100. Целищев В.А., Русак A.M., Шараев В.А., Скорынин Ю.Н. и др. Струйные гидравлические рулевые машины. Уфа: УГАТУ, 2002. - 284 е.: ил.

101. Ш.Целищева А.Р., Целищев В.А. Выбор гидромеханических корректирующих устройств для электрогидравлического следящего привода со струйным гидроусилителем//У правление в сложных системах: Межвуз. науч. сб. Уфа, 1998;

102. Чащин В.А. Пневмопривод систем управления ЛА с дроссельным распределителем: Учебное пособие, Москва, МАИ, 1994;

103. Шумилов И.С., Гониодский В.И. Характеристики гидромеханических систем управления современных самолетов. Учебное пособие, М., МГТУ., 1996, 2 п.л.

104. Электромеханические преобразователи гидравлических и газовых приводов/Е.М. Решетников, Ю.А. Саблин, В.Е. Григорьев и др. М.: Машиностроение, 1982. - 144 е.;

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Цель работы

Целью лабораторной работы является изучение устройства, принципа работы и математических моделей электрических, гидравлических и пневматических рулевых приводов, а также анализ статической и динамических характеристик типового рулевого привода с помощью математической модели привода, составленной в системе программирования Матлаб.

Задание

При выполнение работы необходимо:

    Изучить устройство, принцип работы и математические модели электрических, гидравлических и пневматических рулевых приводов (РП).

    Нанести значения ЛАЧХ и ЛФЧХ, рассчитанные в п.4. Сравнить экспериментальное и теоретическое решения.

Порядок выполнения работы

Лабораторная работа выполняется бригадами на компьютерах.

Бригада выполняет вариант задания, выдаваемый преподавателем. Варианты различаются исходными данными для проведения расчетов.

Все расчеты проводятся в системе программирования Matlab с использованием пакета визуального программирования Simulink.

Предполагается, что начальные навыки работы в Matlab и Simulink были получены студентами при выполнении первой лабораторной работы по данной дисциплине.

Определить экспериментально путем проведения компьютерного эксперимента с моделью привода значения логарифмических амплитудной и фазовой частотных характеристик замкнутого рулевого привода при трех значениях частоты гармонического входного сигнала рад/сек.

Методика выполнения работы

Создание модели привода

Предварительно должны быть выполнены следующие действия:

    Запустить MATLAB

    Открыть приложение Simulink.

    Создать программу моделирования линейного и нелинейного РП, показанную на рисунке.

Расчет статической характеристики привода

Статическая характеристика РП строится путем задания на вход модели привода медленно меняющегося входного воздействия, линейно возрастающего в рабочем диапазоне требуемых углов поворота рулей.

Программа моделирования приведена на рисунке. В ней помимо блоков, реализующих модели самой системы, присутствует блок Ramp на входе и два

блока XY Graph для построения графиков статической характеристики для линейной и нелинейной моделей РП.

Блок Ramp (линейно возрастающий сигнал) берется из раздела Sources (входы) библиотеки блоков пакета Simulink.

Блоки XY Graph берутся из раздела Sinks (выходы) библиотеки блоков Simulink. Они служат для построения зависимости на основе данных

Полученные графики статических характеристик для линейной и нелинейной моделей рулевого привода следует перерисовать и сравнить друг с другом.

Экспериментальное построение частотных характеристик

Для экспериментального определения отдельных точек логарифмических амплитудной и фазовой частотных характеристик РП создаем программу, показанную на рисунке. Для построения частотных характеристик используем линейную модель рулевого привода, приведенную на верхней части схемы. Нижняя часть схемы блокируется с помощью блока Terminator (раздел Sinks библиотеки).

Чтобы на графике было удобно определять амплитуду выходного гармонического сигнала и фазовый сдвиг этого сигнала по сравнению с входным, время моделирования в каждом из трех вариантов расчета следует задавать разным, приблизительно равным 4 периодам входного гармонического сигнала. Период синусоиды связан с ее частотой соотношением: , поэтому. При можно принять сек.

В каждом эксперименте с графиков входа и выхода необходимо снять следующие параметры:

Амплитуду выхода;

Интервал времени между моментами времени, когда входной и выходной гармонические сигналы, соответствующие друг другу, достигают максимальных значений, равных амплитудам этих сигналов.

Следует обратить внимание на тот факт, что при запаздывании выхода по отношению к входу интервал является отрицательной величиной.

Используя результаты экспериментов и исходные данные, необходимо рассчитать значения амплитудной и фазовой частотной характеристик системы при указанных трех частотах. Компьютерные эксперименты и вычисления удобно приводить с использованием таблицы, форма которой приведена в таблице.

Форма таблицы для построения частотной характеристики привода по точкам

Характеристика

Частота синусоиды, рад/сек

Период синусоиды,

Время моделирования,

Амплитуда выходной синусоиды,

Запаздывание выходной синусоиды по отношению к входной, сек

Значение логарифмической амплитудной частотной характеристики,

Значение фазовой частотной характеристики,

Построение частотных характеристик с помощью блока LTI Viewer

Программа LTI Viwer предназначена для анализа характеристик линеаризованной модели, соответствующей заданной нелинейной модели системы, составленной в Simulink. Программа позволяет рассчитать и построить переходный процесс в системе, импульсную переходную функцию, частотную характеристику ситемы и другие.

Для подключения программы к созданной модели системы необходимо выполнить следующие действия:

    Выполнить команду Tools\Linear Analysis… окна Simulink-модели. В результате выполнения команды откроется окно Model_Inputs_and_Outputs (входы и выходы модели), а также пустое окно Simulink LTI-Viewer.

    Установить блок Input Point и блок Output Point в точки входа и выхода модели исследуемой системы.

    В окне LTI Viewer выполнить команду Simulink\Get Linearized Model (создать линеаризованную модель).

Данная команда выполняет линеаризацию модели и сразу по умолчанию строит реакцию системы на единичное ступенчатое воздействие.

    Для получения остальных характеристик системы необходимо выполнить команду Edit\Plot Configuration… в окне LTI Viewer.

Построение переходных процессов

Переходный процесс привода можно построить, подав на вход модели привода ступенчатое воздействие и наблюдая реакцию с помощью блока Scope.

Для линейной системы вид переходного процесса не зависит от величины входного воздействия, т.е. изменяется пропорционально величине ступенчатого сигнала. Поэтому при анализе линейных систем переходный процесс строят при единичном входном ступенчатом воздействии l(t).

Для нелинейных систем реакция системы зависит не только от свойств системы, но и от величины ступенчатого воздействия. Поэтому, чтобы оценить влияние нелинейностей привода на вид переходного процесса, в работе расчеты следует провести при большом ступенчатом входном сигнале.

Ступенчатое воздействие можно задать с помощью блока Step и Constant.

Чтобы сравнивать переходные процессы для линейной и нелинейной моделей гироскопа, целесообразно кривые процессов для этих двух моделей построить на одном графике. В Simulink две или несколько кривых можно построить на одном графике, объединив два или несколько скалярных сигналов в один векторный сигнал и подав этот векторный сигнал на вход блока Scope.

Объединение скалярных сигналов в векторный сигнал выполняется с помощью блока Mux из раздела Signal Routing библиотеки блоков Simulink.

Инерция рулевого привода, характеризуемая его постоянной времени T, сравнительно невелика (до 0.05 сек). Поэтому для построения переходного процесса время моделирования можно задать также небольшое, примерно равное (10-20)Т, т.е. 0.5-1 сек. Это время задается на панели инструментов программы под кнопками Simulation/Simulation Parameters/Stop Time.

Следует зарисовать и сравнить графики переходных процессов, соответствующие линейной и нелинейной моделях рулевого привода.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png