Фе́рми-эне́ргия - значение энергии, ниже которой при температуре абсолютного нуля Т=0 К, все энергетические состояния системы частиц, подчиняющихся Ферми - Дирака статистике , заняты, а выше - свободны. Уровень Ферми - некоторый условный уровень, соответствующий энергии Ферми системы фермионов ; в частности электронов твердого тела, играет роль химического потенциала для незаряженных частиц. Статистический смысл уровня Ферми - при любой температуре его заселенность равна 1/2 .

Положение уровня Ферми является одной из основных характеристик состояния электронов (электронного газа) в твердом теле. В квантовой теории вероятность заполнения энергетических состояний электронами, определяется функцией Ферми F(E):

F(E) =1/(e (E-E F)/kT +1) , где

Е - энергия уровня, вероятность заполнения которого определяется,

E F - энергия характеристического уровня, относительно которого кривая вероятности симметрична;

Т - абсолютная температура;

При абсолютном нуле из вида функции следует, что

F(E) = 1 при Е F ;

F(E) = 0 при Е >E F .

То есть все состояния, лежащие ниже уровня Ферми, полностью заняты электронами, а выше него свободны.

Энергия Ферми E F - максимальное значение энергии, которое может иметь электрон при температуре абсолютного нуля. Энергия Ферми совпадает со значениями химического потенциала газа фермионов при Т =0 К , то есть уровень Ферми для электронов играет роль уровня химического потенциала для незаряженных частиц. Соответствующий ей потенциал j F = E F /е называют электрохимическим потенциалом.

Таким образом, уровнем Ферми или энергией Ферми в металлах является энергия, которую может иметь электрон при температуре абсолютного нуля. При нагревании металла происходит возбуждение некоторых электронов, находящихся вблизи уровня Ферми (за счет тепловой энергии, величина которой порядка kT ). Но при любой температуре для уровня с энергией, соответствующей уровню Ферми, вероятность заполнения равна 1/2. Все уровни, расположенные ниже уровня Ферми, с вероятностью больше 1/2 заполнены электронами, а все уровни, лежащие выше уровня Ферми, с вероятностью больше 1/2 свободны от электронов.

Для электронного газа в металлах при Т = 0 величина энергии Ферми однозначно определяется концентрацией электронов и ее можно выразить через число n частиц электронного газа в единице объема: зависимость энергии Ферми от концентрации электронов нелинейная.

С ростом температуры (а также уменьшением концентрации электронов) уровень Ферми смещается по шкале энергий влево, но его заселенность остается равной 1/2. В реальных условиях изменение E Fс увеличением температуры мало. Например, для Ag, имеющего при Т=0 значение E F равное 5, 5 эВ, изменение энергии Ферми при температуре плавления составляет всего около 0, 03% от исходного значения.

В полупроводниках при очень низких температурах уровень Ферми лежит посередине между дном зоны проводимости и потолком валентной зоны . (Для донорных полупроводников - полупроводников n -типа проводимости - уровень Ферми лежит посередине между дном зоны проводимости и донорным уровнем). С повышением температуры вероятность заполнения донорных состояний уменьшается, и уровень Ферми перемещается вниз. При высоких температурах полупроводник по свойствам близок к собственному, и уровень Ферми устремляется к середине запрещенной зоны. Аналогичные закономерности проявляются и полупроводниках р -типа проводимости.

Существование энергии Ферми является следствием Принципа Паули . Величина энергии Ферми существенно зависит от свойств системы. Понятие об энергии Ферми используется в физике твердого тела, в ядерной физике, в астрофизике и т. д.

Температур. Энергия Ферми - одно из центральных понятий физики твёрдого тела.

Физический смысл уровня Ферми: вероятность обнаружения частицы на уровне Ферми составляет 0,5 при любых температурах, кроме T = 0.

Название дано в честь итальянского физика Энрико Ферми .

Фермионы - частицы с полуцелым спином , обычно 1/2, такие как электроны - подчиняются принципу запрета Паули , согласно которому две одинаковые частицы не могут занимать одно и то же квантовое состояние. Следовательно, фермионы подчиняются статистике Ферми - Дирака . Основное состояние невзаимодействующих фермионов строится начиная с пустой системы и постепенного добавления частиц по одной, последовательно заполняя состояния в порядке возрастания энергии . Когда необходимое число частиц достигнуто, энергия Ферми равна энергии самого высокого заполненного состояния (или самого низкого незанятого состояния; различие не важно, когда система является макроскопической). Поэтому энергию Ферми называют также уровнем Фе́рми . Частицы с энергией равной энергии Ферми двигаются со скоростью называемой скоростью Фе́рми .

В свободном электронном газе (квантовомеханическая версия идеального газа фермионов) квантовые состояния могут быть помечены согласно их импульсу . Кое-что подобное можно сделать для периодических систем типа электронов, движущихся в атомной решётке металла , используя так называемый квазиимпульс (Частица в периодическом потенциале ). В любом случае, состояния с энергией Ферми расположены на поверхности в пространстве импульсов, известной как поверхность Ферми . Для свободного электронного газа, поверхность Ферми - поверхность сферы; для периодических систем, она вообще имеет искаженную форму. Объем заключённый под поверхностью Ферми определяет число электронов в системе, и её топология непосредственно связана с транспортными свойствами металлов, например, электрической проводимостью . Поверхности Ферми большинства металлов хорошо изучены экспериментально и теоретически.

Уровень Ферми при ненулевых температурах

При ненулевой температуре ферми-газ не будет являться вырожденным , и населённость уровней будет плавно уменьшаться от нижних уровней к верхним. В качестве уровня Ферми можно выбрать уровень, заполненный ровно наполовину (то есть вероятность находящегося на искомом уровне состояния быть заполненным частицей должна быть равна 1/2).

Энергия Ферми свободного ферми-газа связана с химическим потенциалом уравнением

где - энергия Ферми, - постоянная Больцмана , и - температура . Следовательно, химический потенциал приблизительно равен энергии Ферми при температурах намного меньше характерной температуры Ферми . Характерная температура имеет порядок 10 5 для металла, следовательно при комнатной температуре (300 ), энергия Ферми и химический потенциал фактически эквивалентны. Это существенно, потому что химический потенциал не является энергией Ферми, которая входит в распределение Ферми - Дирака .

См. также

Литература

Гусев В. Г., Гусев Ю. М. Электроника. - М.: Высшая школа, 1991. - С. 53. - ISBN 5-06-000681-6 .


Wikimedia Foundation . 2010 .

Смотреть что такое "Энергия Ферми" в других словарях:

    Энергия Ферми - Fermi Energy Энергия Ферми Значение энергии, ниже которого все состояния системы частиц, подчиняющихся статистике Ферми Дирака (фермионов), при абсолютном нуле температуры заняты. Для идеального вырожденного газа фермионов энергия Ферми… … Толковый англо-русский словарь по нанотехнологии. - М.

    энергия Ферми - Fermio lygmens energija statusas T sritis Standartizacija ir metrologija apibrėžtis Didžiausioji galima fermionų sistemos užpildytosios būsenos energijos vertė absoliučiojo nulio temperatūroje. atitikmenys: angl. Fermi energy; Fermi level energy… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    энергия Ферми - Fermio energija statusas T sritis radioelektronika atitikmenys: angl. Fermi energy vok. Fermi Energie, f rus. фермиевская энергия, f; энергия Ферми, f pranc. énergie de Fermi, f … Radioelektronikos terminų žodynas

    энергия Ферми - Ферми уровень значение энергии, ниже которой все энергетические состояния частиц вырожденного газа при Т = 0 К заняты, а выше свободны; определяет верхнюю границу скорости частиц при 0 К. Названа в честь итальянского физика Э.… … Энциклопедический словарь по металлургии

    - (газ Ферми), газ из ч ц с полуцелым (в ед. ћ) спином, подчиняющийся Ферми Дирака статистике. Ф. г. из невзаимодействующих ч ц наз. идеальным Ф. г. К Ф. г. относятся эл ны в металлах и полупроводниках, эл ны в атомах с большими ат. номерами,… … Физическая энциклопедия

    Ферми: Энрико Ферми (1901 1954) выдающийся итальянский физик. Ферми единица длины, используемая в ядерной физике. Ферми древний город на острове Лесбос эпохи энеолита и ранней бронзы. Телескоп Ферми космический телескоп… … Википедия

    Изоэнергетич. поверхность в пространстве квазиимпульсов?(р)=?F, отделяющая область занятых электронных состояний металла от области, в к рой при T=0К электронов нет. Электроны, имеющие энергию?F, расположены на Ф. п. Большинство свойств… … Физическая энциклопедия

    Энергия, ниже которой при Т = 0 К все энергетические состояния системы частиц или квазичастиц, подчиняющихся Ферми Дирака статистике, заняты, а выше свободны. * * * ФЕРМИ ЭНЕРГИЯ ФЕРМИ ЭНЕРГИЯ, значение энергии, ниже которой при температуре… … Энциклопедический словарь

    В физике, энергия Ферми (EF) системы невзаимодействующих фермионов это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в ее основном состоянии при абсолютном нуле… … Википедия

Понятия энергии Ферми и уровня Ферми были введены ранее для металлов. В полупроводниках функция распределения электронов по состояниям имеет тот же вид, что и в металлах. Энергия Ферми в полупроводниках имеет тот же физический смысл: энергия Ферми - это максимально допустимая энергия, ниже которой при нулевой абсолютной температуре все энергетические уровни заняты [f(E) = 1], а выше которой все уровни пусты [f(E ) = 0]. Для полупроводников, у которых при абсолютном нуле валентная зона полностью заполнена, а зона проводимости совершенно свободна, функция распределения имеет разрыв. Следовательно, уровень Ферми в полупроводнике должен лежать при абсолютном нуле в запрещенной зоне.

Уровень Ферми в собственном полупроводнике

Для собственного полупроводника концентрации электронов и дырок равны (), т.к. каждый электрон, покинувший валентную зону, создает одну дырку. Приравнивая равенства (17) и (19), получим

Разрешая последнее равенство относительно Е F , получим

Если эффективные массы электронов и дырок равны [ = ,то = 0] и уровень Ферми собственного полупроводника при любой температуре располагается посередине запрещенной зоны.

Температурная зависимость положения уровня Ферми в собственном полупроводнике определяется третьим слагаемым в уравнении (23). Если эффективная масса дырки в валентной зоне больше эффективной массы электрона в зоне проводимости, то уровень Ферми смещается с повышением температуры ближе к дну зоны проводимости. В противоположном случае уровень Ферми смещается к потолку валентной зоны. Положение уровня Ферми в собственном полупроводнике с изменением температуры схематически показано на рис. 5.

Для большинства полупроводников эффективная масса дырки не намного превышает эффективную массу электрона и смещение уровня Ферми с изменением температуры незначительно. Однако у антимонида индия (InSb) , а ширина запрещенной зоны невелика (E g = 0,17 эВ), так что при Т > 450K уровень Ферми входит в зону проводимости. При этой температуре полупроводник переходит в вырожденное состояние.

Рис. 5. Зависимость уровня Ферми от температуры в собственном полупроводнике при различных соотношениях эффективных масс электронов и дырок.

1 - ; 2 - ; 3 - .

Уровень Ферми в примесных полупроводниках

Положение уровня Ферми в примесных полупроводниках может быть найдено из условия электронейтральности кристалла. Для донорного полупроводника это условие записывается в виде

здесь N d - концентрация донорных уровней,n d - концентрация электронов на донорных уровнях. Концентрация электронов в зоне проводимости равна сумме концентраций дырок в валентной зоне и концентрации положительно заряженных ионов доноров (последняя, очевидно, равнаN d -n d ).

Концентрацию электронов на донорных уровнях можно вычислить, умножив концентрацию этих уровней N d на функцию распределения Ферми-Дирака:

При подстановке концентрации электронов на донорных уровнях в уравнение (24) было сделано предположение, что газ электронов примесных атомов невырожденный, что позволило пренебречь единицей в знаменателе формулы (25).

Уравнение (26) ввиду его сложности обычно в общем виде не решают, а ограничиваются рассмотрением частных случаев. Например, при низких температурах, когда электроны в зоне проводимости появляются в основном за счет переходов с примесных уровней, а концентрация дырок близка к нулю, решение уравнения (26) имеет вид

Рисунок 6 Температурные зависимости положения уровня Ферми в донорном (а) и акцепторном (б) полупроводниках.

Из уравнения (27) следует, что при абсолютном нуле температуры энергия Ферми донорного полупроводника находится строго посередине между дном зоны проводимости и донорными уровнями. Температурная зависимость положения уровня Ферми определяется третьим членом в уравнении (27), который меняет знак с изменением температуры. Поэтому уровень Ферми с повышением температуры сначала смещается к зоне проводимости, а затем - к валентной зоне (рис. 6а).

Аналогично можно получить выражение для температурной зависимости уровня Ферми в акцепторном полупроводнике. График этой зависимости схематически приведен на рис. 6б.

Вырожденный электронный газ в металле.

Распределение электронов по различным квантовым состояниям подчиняется принципу Паули, согласно которому в одном состоянии не может быть двух одинаковых (с одинаковым набором четырех квантовых чисел) электронов, они должны отличаться какой-то характеристикой, например направлением спина. Следовательно, по квантовой теории, электроны в металле не могут располагаться на самом низшем энергетическом уровне даже при 0 К. Принцип Паули вынуждает электроны взбираться вверх «по энергетической лестнице».

Электроны проводимости в металле можно рассматривать как идеальный газ, подчиняющийся распределению Ферми-Дирака. Если μ 0 – химический потенциал электронного газа при T = 0 К, то, среднее число электронов в квантовом состоянии с энергией Е равно

(1)

Для фермионов (электроны являются фермионами) среднее число частиц в квантовом состоянии и вероятность заселенности квантового состояния совпадают, так как квантовое состояние либо может быть не заселено, либо в нем будет находиться одна частица. Это означает, что для фермионов = f (Е ), где f (Е ) – функция распределения электронов по состояниям. Из (1) следует, что при Т = 0 К функция распределений = 1, если E < μ 0 , и =0, если E > μ 0 ,. График этой функции приведен на рис. 15, а. В области энергий от 0 до μ 0 функция равна единице. При E = μ 0 она скачкообразно изменяется до нуля. Это означает, что при Т = 0 К все нижние квантовые состояния, вплоть до состояния с энергией E = μ 0 , заполнены электронами, а все состояния с энергией, большей μ 0 , свободны. Следовательно, μ 0 есть не что иное, как максимальная кинетическая энергия, которую могут иметь электроны проводимости в металле при 0 К. Эта максимальная кинетическая энергия называется энергией Ферми и обозначается Е F . ( Е F = μ 0). Поэтому распределение Ферми - Дирака обычно записывается в виде

(2)

Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми. Уровню Ферми соответствует энергия Ферми Е F: , которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода электрона из металла нужно отсчитывать не от дна «потенциальной ямы», как это делалось в классической теории, а от уровня Ферми, т. с. от верхнего из занятых электронами энергетических уровней.

Для металлов при не слишком высоких температурах выполняется неравенство kT << E F . Это означает, что электронный газ в металлах практически всегда находится в состоянии сильного вырождения. Температура T 0 вырождения находится из условия kT 0 = E F . Она определяет границу, выше которой квантовые эффекты перестают быть существенными. Соответствующие расчеты показывают, что для электронов в металле Т 0 ≈ 10 4 К, т.е. для всех температур, при которых металл может существовать в твердом состоянии, электронный газ в металле вырожден.


При температурах, отличных от 0 К, функция распределения Ферми-Дирака (2) плавно изменяется от 1 до 0 в узкой области (порядка kT ) в окрестности Е F (рис. 15, б). (Здесь же для сравнения пунктиром приведена функция распределения при Т = 0 К.) Это объясняется тем, что при T > 0 небольшое число электронов с энергией, близкой к Е F , возбуждается за счет теплового движения и их энергия становится больше Е F . Вблизи границы Ферми при Е < Е F заполнение электронами меньше единицы, а при Е >Е F . - больше нуля. В тепловом движении участвует лишь небольшое число электронов, например при комнатной температуре Т ≈ 300 К и температуре вырождения T 0 = 3 10 4 К, - это 10 -5 от общего числа электронов.

Если (Е - Е F ) >> kТ («хвост» функции распределения), то единицей в знаменателе (2) можно пренебречь по сравнению с экспонентой и тогда распределение Ферми - Дирака переходит в распределение Максвелла - Больцмана.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png